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Studying the extent to which realism is compatible with quantum mechanics teaches us something
about the quantum mechanical universe, regardless of the validity of such realistic assumptions. It
has also recently been appreciated that these kinds of studies are fruitful for questions relating
to quantum information and computation. Motivated by this, we extend the ontological model
formalism for realistic theories to describe a set of theories emphasizing the role of measurement
and preparation devices by introducing ‘hidden variables’ to describe them. We illustrate both the
ontological model formalism and our generalization of it through a series of example models taken
from the literature. Our extension of the formalism allows us to quantitatively analyze the meaning
contextuality (a constraint on successful realistic theories), finding that - taken at face-value - it can
be realized as a natural interaction between the configurations of a system and measurement device.
However, we also describe a property that we call deficiency, which follows from contextuality, but
does not admit such a natural interpretation. Loosely speaking, deficiency breaks a symmetry
between preparations and measurements in quantum mechanics. It is the property that the set of
ontic states which a system prepared in quantum state |¢) may actually be in, is strictly smaller
than the set of ontic states which would reveal the measurement outcome [¢)(¢)| with certainty.

I. INTRODUCTION

the quantum state is the state of reality. However, as

Quantum mechanics is famously plagued by certain
conceptual problems, the resolution of which drive at-
tempts to understand the theory. These attempts have
resulted in the appearance of a diverse number of inter-
pretations of quantum mechanics - ideas about how to
relate mathematical objects from the theory to some pic-
ture of (or viewpoint regarding) physical reality. Some-
what incredibly, there is still not even a consensus on
precisely which features of quantum mechanics are the
source of these conceptual problems.

One approach that has been advocated is to simply
deny the need for understanding quantum mechanics in
terms of a metaphysical picture of reality at all. We will
have nothing to say about such a dismissive approach in
this paper. However, if, as will be assumed here, it is de-
sirable to understand quantum mechanics in a realistic
framework, then many possibilities arise. The simplest
realistic approach is to simply assert that the quantum
state itself is in one-to-one correspondence with reality.
This, as Einstein and others have emphasized [1, [2], en-
tails accepting a view of physical reality with arguably
quite undesirable features (e.g. violent nonlocality, dis-
continuous dynamics, ambiguous emergence of a classical
ontology etc.).

Our goal in this paper is to lay out and expand upon a
framework and a language in which (almost) any theory
attempting to correlate quantum mechanics to a picture
of reality can be formulated. This framework, first intro-
duced in [3], includes the just-mentioned possibility that

emphasized in |1], it also includes possibilities wherein
the quantum state is supplemented by some “hidden
variables”. Regardless of whether there are such hid-
den variables besides quantum states, it is possible that
one might be able to interpret the quantum state epis-
temically |4, 18, 16, [7] - that is, in terms of probability
distributions over some space (see [g, 9] for explicit ex-
amples of such an epistemic construction). If a theory
for the reality underpinning quantum mechanics can be
formulated in the general terms we propose then we re-
fer to it as an ontological model. Following [3], the “true
states of reality” posited by the model will be called “on-
tic states”. The terminology is chosen to emphasize that
while such theories are not necessarily ‘hidden variable
theories’, they do attempt to formulate a picture of phys-
ical reality consistent with quantum mechanics.

Although one might not expect an ontological model to
precisely follow the laws of classical mechanics, there are
certain features, commonplace in classical physics, that
one would hope could be retained - for instance, conser-
vation laws and locality. Amazingly, Bell’s theorem |10]
shows that locality must be abandoned in any theory
whatsoever that describes our universe [11], including,
of course, any ontological model. This feat of generality
rested on Bell’s ability to abstract generic features pos-
sessed by all realistic models. Consolidating and extend-
ing such generality is one goal of the ontological model
formalism that we build upon. Besides nonlocality, the
other primary non-classical feature which any attempt
at explaining quantum mechanics in a realistic frame-


http://arxiv.org/abs/0709.4266v1

work must contend with is contextuality. Contextuality,
first considered for quantum mechanics by Kochen and
Specker [12] and then extended to deal with arbitrary
theories by Spekkens [3], is much less understood and
appreciated than nonlocality. Increasing the generality
of the ontological model formalism also works towards a
second goal of this paper; to elucidate the precise man-
ner in which contextuality must manifest itself in all such
models.

In addition to the above motivations, which originate
from foundational considerations, a second series of mo-
tivations for this research stem from practical issues in
the field of quantum information theory. Precise formu-
lations of a spectrum of realistic theories potentially un-
derpinning quantum mechanics are of use to work in this
field, regardless of their metaphysical consequences. Such
formulations allow us to probe and elucidate those fea-
tures of quantum mechanics distinguishing it from clas-
sical realistic theories - the theories upon which all of
classical information theory is predicated. While the role
of quantum nonlocality (and entanglement in particular)
in distinguishing quantum and classical information the-
ory has been much speculated upon, contextuality has
received far less attention in this regard [3]. We believe
this neglect to be a serious mistake. Furthermore, Aaron-
son [13] has recently discussed how one can define com-
plexity classes in terms of the increased computational
power one might expect if one were able to access indi-
vidual ontic states (and obtain more information about
a system than the quantum formalism itself allows). We
show in Sec. [IL 3] how the theories considered by Aaron-
son can be expressed in the ontological model formalism.
In particular, it then becomes clear that not all onto-
logical models yield the computational advantages that
Aaronson identifies. The paper begins in Sec. [Il by pre-
senting the ontological model formalism as it can be ap-
plied to quantum systems. In the next section a variety
of ontological models, chosen to illustrate the breadth of
possibilities, are discussed. These models include the two
famous examples from Bell’s papers |10, [14], Kochen and
Specker’s non-contextual model of a qubit [12], Aaron-
son’s model [13], a model (due to Beltrametti and Buga-
jski) which takes the quantum state itself as real [15],
and some interesting models of Aerts [16, [17]. It will
quickly become clear that the formalism of Sec. [[Il needs
some augmentation, particularly if we want to be able to
discuss the physical reality of preparation and measure-
ment devices themselves (as any posited realistic theory
of the whole universe should). In Sec. [[V] we therefore
undertake formulating such an extension, and find that
several interesting new possible features arise which can
distinguish different ontological models. We then turn
to a deeper examination of how ontological models deal
with the Kochen-Specker theorem. In doing so we iden-
tify a property we term deficiency, which all ontological
models possess, and which forms the subject of Sec. [Vl
Deficiency involves the explicit breaking of the symme-
try between preparations and measurements that is en-
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FIG. 1: The ‘P — M’ paradigm for operational theories.

joyed by quantum mechanics (e.g. that a preparation of a
quantum state can be achieved by a projective measure-
ment onto that state of a suitable system.) We also show
how deficiency elucidates the fact that measurements in
an ontological model must be disturbing.

II. ONTOLOGICAL MODELS AND QUANTUM
MECHANICS

The formalism of quantum mechanics is well known
and relatively unambiguous, but opinions are varied on
just what this formalism is meant to describe, i.e. how
it corresponds in some sense to reality. One of the most
popular views is the operational one [19]; wherein the
only concern of the theory is to reproduce outcomes of
various experimental procedures employed by a scientist.
The question of how quantum mechanics relates to reality
is then taken to be outside the theories scope.

This approach to quantum theory is one of two views
that are commonly held (often implicitly). The other fre-
quently maintained position is that reality is completely
described by the quantum state - so that within its do-
main of validity it is the end of the story. This is im-
plicitly a realistic view, and therefore one that will be
incorporated in the ontological model formalism. Unless
otherwise stated, when referring to quantum mechanics
we will always have in mind an operational interpreta-
tion of the theory. If it is to be experimentally verified,
any such operational theory needs to be able to describe
the paradigm illustrated in Fig.[Il A system S, initially
interacts with a preparation device P which is configured
according to some macroscopically determinable setting
Sp. This setting is manipulated in order to alter what
the state of S will be as it leaves P. S then travels to-
wards a measurement device!, M, configured according
to some setting Spq. M will then register some partic-
ular outcome dependent on both the state of S and the
setting Sag.

We can (for our purposes) define operational quantum
mechanics by how it determines measurement statistics

1 Although it has a natural representation in the ontological model
formalism, we will not need to consider the possibility of a trans-
formation acting on a system between P and M.



within this kind of P — M scenario,

Definition 1 Quantum Mechanics is a theory that de-
scribes Fig.[1 by associating a density operator ps,, (on a
suitably chosen Hilbert space H) with a preparation proce-
dure Sp, and a positive operator valued measure (POVM)
{EL}, with the measurement procedure Spq, there being
one ‘POVM effect’, Ey for each of the possible measure-
ment outcomes. The quantum prediction for the proba-
bility of the k' outcome in Sy occurring conditioned
on a preparation Sp is then given by the Born rule,
Pr(k|Sp, Sa) = tr (Expsy ).

Of course, special cases of this formalism are that quan-
tum mechanics associates rays [1)) € H with pure state
preparations and projection operators with sharp (rank
one) measurements, which can be thought of as ‘testing’
whether or not a system is in a particular pure state.

Quantum mechanics, defined in this operational way, is
exceedingly successful at reproducing observed statistics,
but it doesn’t give us any picture of what “really” goes on
inside a system when experimental procedures are per-
formed on it. In Newtonian mechanics one deals with
measurements, preparations and evolutions of a particle’s
position, and this position is posited to be ever-existing,
simply revealed to us by measurement, so the theory is
quite clear on how its predictions relate to reality. In
comparison, quantum mechanics deals with transforma-
tions of state vectors and no prior relation is specified
between these state vectors and reality.

A realistic view of quantum mechanics adds to this
picture with the aim of providing a link between the
quantum mechanical formalism and an underlying real-
ity. There is of course no unique way in which one might
achieve this kind of realistic interpretation, and in fact
many such constructions have been given to date, the
most famous surely being Bohmian mechanics 20, [21].
In Bohmian mechanics the quantum state of a parti-
cle and a specification of its position are taken to cor-
respond directly to elements of the ‘underlying reality’.
Other attempts at realistic constructions can be found
in [, 110,12, 113, 15, 122, 123] We provide a more detailed
consideration of a representative selection of these con-
structions (and show how they can be expressed in the
formalism we use) in Sec. [TI}

To identify features common to these realistic con-
structions we would like a general language which allows
us to abstract away the specific details of any one partic-
ular realistic view. We use the term ontological model to
refer to a very natural, although non-exhaustive, formal-
ism which does just this job. For the remainder of the
paper we will implicitly restrict our attention to those
realistic constructions expressible in this formalism?, re-
ferring to them as ontological models [3]. So what will

2 One of the reasons that the ontological model formalism does not
exhaust all of the possible realistic ways of interpreting quantum
mechanics is because it employs several assumptions about the

a general ontological model look like? Any such model
should pick up precisely where operational quantum me-
chanics leaves off, and specify just what it is that a quan-
tum state allows us to infer about the real state of a
system. The model can then be filled out by consider-
ing how each of the operations in Fig. [ are taken to
act on these hypothesized real states of the system. We
would expect that acting a preparation procedure P on
a system S would configure S so that it possesses some
particular real state after the preparation. A measure-
ment procedure M would then correspond to some kind
of interaction with S - an interaction tailored to be such
that M registers one or another measurement outcome
dependent on the prior real state of S.

An ontological model quantifies these realistic notions,
by introducing a set A of ontic states A to be associated
with §. These constitute a complete description of what-
ever reality the model takes to underpin the system, so
that a specification of A is a complete description of any
attributes that S might possess. The precise form taken
by A will depend on the particular ontological model un-
der consideration and the nature of the underlying reality
that it introduces. In the simplest possible realistic in-
terpretation, we can take quantum states to be direct
and complete descriptions of reality. Then we obtain
an ontological model in which the ontic state space A is
precisely equal to the projective Hilbert space of S, i.e.
A = PH. More generally however it might be the case
that A # PH. Then either the quantum state is not a
complete description of reality and must be supplemented
by extra ‘hidden’ variables (PH C A), or the quantum
state does not play a realistic role at all (PH ¢ A),
and must simply represent our state of knowledge of the
real state of S. For example, in Bohmian Mechanics,
elements of A consist of a specification of the system’s
quantum state and a specification of the system’s posi-
tion and therefore A takes the form of a cartesian product
A =PH x R3.

So the state space A provides a description of the real
state of the system, S. Preparation and measurement
devices P and M, ultimately being physical systems,
should also be describable in terms of their own set of
ontic states. However, the ontological model formalism
has traditionally been restricted to a realistic description
of § alone, simplifying matters by treating P and M as
external to the theory. In Sec.[VBlwe show how to extend
the ontological model formalism to also provide ontolog-
ical treatments for these devices, allowing us to consider
a wider class of models and affording an insight into the
manifestation of contextuality in realistic theories. For
now, however, we will restrict our attention to the tradi-
tional formulation of providing a realistic description of
the system only.

behavior of reality. This will become apparent when we consider
extending the conventional formalism in Sec. [/ Bl



In this simplified picture (wherein we neglect ontolog-
ical descriptions of P and M) how does an ontological
model quantify preparations and measurements in terms
of operations on the real states of the system, S?7 In
general, performing a preparation with setting Sp will
result in the system S being prepared in some particular
ontic state A € A. Simply knowing Sp may, however,
be insufficient information to deduce precisely which A a
system is in. Thus, in general, an ontological model will
associate a probability distribution p (A|Sp) over A with
preparation procedure Sp. This distribution encodes our
epistemological uncertainty as to the precise ontological
configuration of S, and so we refer to it as an epistemic
state. Note that since a system must be described by
some A € A we will require that,
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Associating |¢)) with a probability distribution is ob-
viously compatible with the notion of quantum states
having no direct relation to the ontic states, but it is also
consistent with quantum states being taken to be pre-
cisely the ontic states themselves. To allow for this we
need only take A = PH and write p(A|) = 6(A — Ay)
with 6 being the Dirac delta function and Ay the unique
ontic state associated with preparation settings consis-
tent with |¢)). Hence the view where quantum states are
taken to be complete descriptions of reality can easily
be expressed in the ontological model formalism. In the
next section we will see an explicit example of a model
that achieves this.

Consider now a measurement wherein M is configured
according to some setting Saq. The outcome of this mea-
surement will be determined by the ontic state A of the
system and how it interacts with M (a point which we
elaborate on in Sec. [VB). Now the most general possi-
bility is that A might only probabilistically determine a
measurement outcome. Following |3], we refer to models
wherein even a complete description of reality only allows
one to make probabilistic predictions, as being outcome
indeterministic. Conversely if the ontic state \ of S is suf-
ficient to completely determine a measurement’s outcome
then we call the model outcome deterministic. To allow
for both these possibilities we therefore represent the k"
outcome of a measurement performed according to S
by a distribution & (k|A, Saq) over A, telling us the prob-
ability that a given A € A will yield the k' outcome. We
refer to such distributions as indicator functions (consid-
ered as functions of ). In outcome deterministic models,
& (k|X\, Sam) € {0,1} - so that the indicator functions are
idempotent, i.e. we have £2(k|\, Sp) = E(k|A, Sam) for
all A. Where might the probabilities appearing in out-
come indeterministic models arise from? There are two
possibilities. Firstly they could occur because of our fail-
ure to take into account the precise ontological configura-
tions of either P or M, a possibility which we address in
Sec.[VBl Alternatively it could be that the probabilities

are an inherent property of the reality described by the
model, so that even if one had complete knowledge of the
configuration of the whole universe, one would be unable
to make any certain statements about the system’s future
configuration.

Since one or the other outcome of any measurement
Sa must occur - no matter what A\ describes S - we
have,

> E(kIA Spm) =1 VA (2)

k

The settings Sp and Sy will play a crucial role in many
of our discussions. Clearly different settings Sp can de-
scribe situations in which P is set - within an operational
quantum mechanical description - to prepare a system
according to different density operators. Similarly, dif-
ferent settings Siq can describe cases where M is set
to implement different POVM measurements. However,
there are also many distinct settings of P and M con-
sistent with a quantum mechanical description given by
the same density operator or POVM. The settings will
then specify different instances of some other extrane-
ous property of P or M. We will later see that there
exist quantitative extraneous properties which, although
not altering the POVM implemented, must alter the in-
dicator function used by an ontological model. Thus
the quantum mechanical POVM description of a mea-
surement can actually be thought of as being a function
E(Sum) of the measurement setting of M - in that each
POVM corresponds in general to a certain set of settings
of M. Hence although specifying Sa¢ will uniquely fix
a POVM E, knowledge of only E may be insufficient to
completely determine Spq. The full setting, S, of M is
referred to as the measurement context (a term we define
in more detail later). Hence, fully specifying the mea-
surement context may require stating not just a POVM
E, but also some ‘extra’ information which completely
determines M’s setting3. So although we may occasion-
ally write £(k|A, E'), we should really make explicit the
precise setting S by writing either (k|X, Saq) or (if we
still want to make clear the POVM), £(k|X\, E, Sa).

Similarly, a density operator p may be compatible with
many preparation settings Sp, and so although we will
often write epistemic states as p(A|p), we should really
express them in the form p(A[Sa) or p(A|p, Sm).

To summarize then, for the purposes of this paper, we
can define an ontological model by the following criteria,

Definition 2 An ontological model posits an ontic state
space A. The probability of the ontic state being A, given
the preparation procedure Sp is denoted by a probabil-
ity distribution which we refer to as an epistemic state,

3 Note also that on occasion we will lazily refer to a POVM E as
defining a measurement setting. Strictly speaking of course, we
mean to say “a measurement setting that is described in quantum
mechanics by a POVM E”.



w(A|Sp). The probability of measurement outcome k oc-
curring giwen that the ontic state is A and the measure-
ment procedure was Spq is given by an indicator function,
written £(kIX, Spm) (with €2(k|N, Spm) = E(K|N, Sam) in
outcome deterministic models). We then demand that a
successful ontological model of quantum mechanics should
reproduce the required statistics by satisfying,

/ AN E(KIA, B, Spou(Np, Sp) = tr (pEx) . (3)

Seen from the viewpoint of an ontological model, a
quantum mechanical picture of reality generally corre-
sponds to a coarse-graining over the ontic states. By ex-
plicit construction, all ontological models will yield the
same statistical predictions at this coarse-grained ‘quan-
tum level’. In many models, complete knowledge of the
ontic configuration of a system would lead one to make
predictions differing in some way from those of quantum
theory. Serious advocates of ontological models might
claim that the reason we do not see these deviations
from quantum predictions is because our current exper-
iments are still too ‘coarse-grained’ to be able to oper-
ate on the level of individual ontic states. Another pos-
sibility, is that ontological models might inherently ex-
hibit a restriction such that maximal possible knowledge
of a system’s ontological configuration is always incom-
plete knowledge [4]. The ontic states describing a sys-
tem would then, to some extent, be ‘inherently unknow-
able’. Although such a restriction-of-knowledge principle
has been shown to have the potential to reproduce many
characteristic features of quantum mechanics [g], it is not
a necessary feature of all ontological models.

Even though manipulation of individual ontic states
is potentially forbidden (either technologically or inher-
ently), we will still have occasion to consider the predic-
tions that a model would be able to make if we hypo-
thetically were somehow able to prepare and distinguish
between individual ontic states. In particular we will find
it useful to refer to a kind of equivalence between models,
which we define as follows,

Definition 3 An ontological model O is said to be onto-
logically equivalent to a second model O if all statistics
predicted by O are exactly reproduced by model O, even in
cases where one is able to perform preparation and mea-
surement procedures that distinguish between individual
ontic states.

III. EXAMPLES OF ONTOLOGICAL MODELS

The formalism that we have described so far is suffi-
cient to describe many existing ontological models. How-
ever, there exist models which lie outside of its scope
because of the way that they treat the measurement ap-
paratus. In this section we present some examples of
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FIG. 2: Nlustration of the epistemic states and indicator func-
tions of the Beltrametti-Bugajski model.

ontological models that show both the utility and limita-
tions of the standard ontological model formalism?. The
limitations we encounter will act as motivations to gen-
eralize the formalism, a task we undertake in Sec. [Vl

1. The Beltrametti- Bugajski model

The model of Beltrametti and Bugajski [15] is essen-
tially a thorough rendering of what most would refer to as
an orthodox interpretation of quantum mechanics®. The
ontic state space postulated by the model is precisely the
projective Hilbert space, A = PH, so that a system pre-
pared in a quantum state v is associated with a sharp
probability distribution® over A,

iAW) dA = 6 (A = Ay) dA, (4)

where we are using ¢ interchangeably to label the Hilbert
space vector and to denote the ray spanned by this vec-
tor. Ay denotes the unique ontic state associated with
the quantum state 1. Thus the model posits that the
different possible states of reality are simply the different
possible quantum states.

Quantum statistics are reproduced by assuming that
the probability of obtaining an outcome k of a measure-
ment procedure Spq depends indeterministically on the
system’s ontic state A as,

§ (KA B, Sp) = tr (]A)(AE) (5)

4 The formulations presented here for the Beltrametti-Bugajski
model and the Kochen Specker model first appeared in [1]. Note
that the model referred to in [1] as “Bell’s model” is an adapta-
tion (by Mermin [24]) of what we call Bell’s second model.
Note, however, that there are several versions of orthodoxy
that differ in their manner of treating measurements. The
Beltrametti-Bugajski model is distinguished by the fact that it
fits within the framework for ontological models we have out-
lined.

6 Preparations which correspond to mixed quantum states can be

constructed as a convex sum of such sharp distributions.

ot



where |A\) € H denotes the quantum state associated with
A € A, and where E = {E}}, is the POVM that quantum
mechanics associates with Spq. It follows that,

Pr (k| E, ) = /A dX € (kIX E, Sa) n(A)

:/Ad)\ (A E) (A= Ay)  (6)
= tr (V) (V| Ex) (7)

and so the quantum statistics are trivially reproduced.

If we restrict consideration to a system with a two
dimensional Hilbert space then A is isomorphic to the
Bloch sphere, so that the ontic states are parameterized
by Bloch vectors of unit length, which we denote by X.
The Bloch vector associated with the Hilbert space ray v
is denoted ¥ and is defined by |1) (1| = s+ %z/_;-& where
G = (04,0y,0) denotes the vector of Pauli matrices and
1 denotes the identity operator.

If we furthermore consider Sy to represent a projec-
tive measurement, then it is associated with a projector-
valued measure (PVM) {|¢) (¢|,|¢") (|} or equiva-
lently, an orthonormal basis {|¢), [¢~)}. Eq. (B) then
simplifies to,

(01X = | (N |? (8)
:%(1+$-X). ()

Where for brevity, we denote the indicator function
E(LIX, |9) (@], Saq) associated with a projector |¢)(¢| as
§([A).

The epistemic states and indicator functions for this
two dimensional case of the Beltrametti-Bugajski model
are illustrated schematically in Fig.

2.  The Kochen-Specker model

We now consider a model for a two-dimensional Hilbert
space due to Kochen and Specker [12]. The ontic state
space A is taken to be the unit sphere, so that individual
ontic states can be written as unit vectors, XeEA A
quantum state v is then associated with the probability
distribution,

p(XJ) d5 = Lo(F- %) ¢ X dX (10)

where z/_; is the Bloch vector corresponding to the quan-
tum state i) and © is the Heaviside step function. This
epistemic state assigns the value cosf to all points an
angle § < 7 from 15, and the value zero to points with
6 > %. This is illustrated in Fig. Bl

Upon implementing a measurement procedure Sy as-
sociated with a projector |¢)(¢| a positive outcome will

FIG. 3: Hlustration of the epistemic states and indicator func-
tions of the Kochen-Specker model.

occur if the ontic state X of the system lies in the hemi-
sphere centered on ¢, i.e.,

- -

E(BIX) = (4 N). (11)

It can be checked that the overlaps of ,LL(XW}) and §(¢|X)
then reproduce the required quantum statistics,

-

/ aX u(N) E(61) = / ax 6 e )i X
= S0+3-8)
= 1l 2. (12)

This model is outcome deterministic, and therefore
demonstrates how one can reproduce quantum statistics
solely through a lack of knowledge about which ontic
state a system is prepared in.

3. Aaronson’s models

In a recent paper [13] Aaronson developed a formal-
ism for describing a certain class of ontological models
in terms of stochastic matrices. Aaronson then went on
to consider the computational complexity of simulating
models from this class.

The idea behind Aaronson’s models is to replace the
Hilbert space vector |¢) describing a quantum system
with a vector vy of the amplitudes of the state when
written in some preferred basis Q = {|wi>}£\;1, ie.
vy = [[(®lw)?, ..., |(¥|lwn)|?]. The action of any uni-
tary transformation on |¢) is then mimicked by a map
S: Q — Q, represented by a stochastic matrix S acting on
the vector vy. As Aaronson shows in [13], such a matrix
must depend not only on the unitary transformation that
it attempts to enact, but also on the particular quantum
state that it is to be acted on. Thus we can write the
stochastic matrix intended to reproduce the action of a
unitary U on a state |¢)) as S(U, ¢). The specific form of



these stochastic matrices is dependent on the particular
hidden variable theory from Aaronson’s formalism. In or-
der to make sure that these theories reproduce quantum
mechanical predictions, the matrices must satisty,

DSl = [wlUT). - (13)

In this scheme, any attempt to perform a measurement
on |¢) in a basis B other than € is interpreted as a unitary
evolution, U, rotating ¢ into the basis ) (represented by
a relevant stochastic matrix), followed by a measurement
in this preferred basis. The outcome that would occur
in a measurement of basis B can then be inferred from
the outcome in basis {2 by the association that U makes
between elements of B and (2.

One might suspect therefore that the ontic state spaces
of Aaronson’s models consist of the discrete set of ba-
sis states Q C PH, so that A = . However the basis
states 2 do not suffice to give a complete description of
the ontic configuration of a system, and we in fact have,
A = QxPH. A specification of the preferred basis states
from € must be supplemented by specifying the system’s
quantum state. Thus the quantum states describing a
system play a dual role, defining epistemic distributions
over the subset of ontic states from {2 whilst also playing
an ontic role themselves. The epistemic states of Aaron-
son’s models take the form,

p(wi, @lY) do =6 (6 =) {wile)|* do.  (14)

That |¢) must also play an ontological role becomes
clear from the indicator functions implied by Aaron-
son’s models. These are determined by the elements
of the model’s stochastic matrices. For example, sup-
pose that one wishes to perform a measurement in a ba-
sis B on a system in state |¢)). Then, recalling Aaron-
son’s construction, we should rotate [¢)) with the unitary
U : B — Q. The probability of obtaining an outcome
|7) € B given that the initial ontic state from Q was w;
is simply given by the ji?" element of the stochastic ma-
trix S(U, ¢) (where we use the subscript j to denote the
basis state from 2 which leads us to infer an outcome
|7) € B). Hence the indicator function associated with
outcome |j) € B (i.e. with the projector |j)(j|) is given
by,

§ (Jlwi, @) = S(U, ¢) - (15)

Note that because we must implement a rotation U in
order to perform our measurement in the preferred basis,
and because the stochastic matrix associated with such
a rotation necessarily depends on the quantum state |¢),
then the indicator function is also dependent on the sys-
tem’s state as well as the basis state from Q. Thus we
see that the most complete description that the model
can give of measurement outcomes requires specifying the
system’s quantum state, not just the particular w; € Q.
Therefore the quantum state itself must play an ontologi-

cal role”. These choices for epistemic states and indicator
functions reproduce the quantum statistics as required,

/dA nAY) €(GIA) = Z/d¢ 1u(ws, B) €(jlwi, @)
= > [ 06 - )|l S0 0

_ ZS(U, )i [{wil )]
|Gl 2. (16)

Where in the last line we have used the constraint on S
given in ([I3]) and the fact that U : B — Q.

Eq. (I8) shows that in Aaronson’s models, the indica-
tor functions are dependent on the preparation procedure
Sp (i.e. what quantum state a system is prepared in).
However, this is not as pathological as one might suppose,
since (as was also the case in the Beltrametti-Bugajski
model) the whole preparation procedure Sp has an on-
tological status. Thus the dependence of M on Sp is
directly mediated through the ontic states of the system.
In Sec. [Vl we generalize the ontological formalism in a
way that can describe models in which indicator func-
tions have a dependence on Sp that cannot be explained
so simply.

It should also be noted that the ontic state space of
Aaronson’s models is that of the Beltrametti-Bugajski
model supplemented with the preferred basis 2. Clearly,
access to ontic states from the Beltrametti-Bugajski
model will not increase one’s computational power be-
yond that possible with standard quantum mechanics. It
is intriguing then that Aaronson is able to show in [13]
that models incorporating €2 as well as the Beltrametti-
Bugajski state space can offer increased computational
power.

4. Bell’s first model

In the paper preempting his famous theorem [14], J.
Bell described a very simple and (by his own admission)
artificial way of introducing ‘hidden variables’ so as to
reproduce the predictions of quantum mechanics for a
spin-% system. The model he introduced is outcome de-

7 One might suggest that the system’s state, |¢) need not take
an ontological role, but since it defines an epistemic distribution
over the preferred basis €2, then perhaps it only introduces an
epistemic component to the indicator functions, thus changing
their statistics without playing an ontic role. However, this is
not possible as one can simply see by noting that the amplitudes
of a state in some fixed basis are not sufficient to completely
parameterize its position in Hilbert space, and so this kind of
epistemic dependence of £ on [¢) would not confer enough in-
formation about [¢) to allow & to fully reproduce the quantum
statistics.



terministic and valid for quantum systems described by
Hilbert spaces of any dimensionality.

The ontic states A of Bell’s first model can be written
as the cartesian product of two subspaces, A = A’ x
A”. The first of these subspaces is isomorphic to the
projective Hilbert space of the system in question, A’ =
PH, whilst the second subspace is the unit interval A” =
[0,1]. A system prepared according to a quantum state
[t) is described in the Bell model by an epistemic state
that is separable over A’ and A",

PN N 1p) AN AN = (N ) (X' [) dNAX". (1)

The distribution over A’ picks out the relevant X, € A’
corresponding to [1); p(N'[1h) = 6(N' = \},)dN', whilst the
distribution over A” selects a A" according to a uniform
probability distribution, regardless of the system’s quan-
tum state; p(N\’|1p) = dN’. Thus the epistemic state over
whole ontic state space A reads,

POV, X)X AN = §(N — Xy) dNdAN. (18)

Now suppose that we wished to perform an /N outcome
PVM measurement P, described in quantum mechanics
by the projectors {Pl}iil Suppose furthermore that the
system has been prepared in a state [¢). The ontic state
of the system will then be given by the pair (/\ip,/\”)
(with A" uniformly selected from the unit interval). The
model reproduces quantum statistics by partitioning the
unit interval, A”, into N subsets, such that for every
i € {1,...,N} a fraction tr(P;|¢)(¢)|) of X € A” are
taken to yield a positive outcome for P;. Quantitatively
then, Bell’s first model associates a deterministic indica-
tor function with the i*" outcome which takes the form,

EAIN N P) =0\ —zi1 (X)) — O\ —z;(\)). (19)

Where the values x;(\') (determining the A\’ over
which £(i| N, ', P) has support) are given by,

zo(X)) = 0, (20)
and,
zi(Xy) = Y tr(Bl$) (), (21)
j=1

for all other values of ¢. This gives precisely the parti-
tioning of the unit interval that we require. Note that
we assume some ordering of PVM elements is chosen for
every measurement, so that permuting the label, i, of the
{Pi}ij\il does not change the indicator functions associ-
ated with the projectors.

This model easily reproduces the quantum statistics
for performing a projective measurement P, = |¢)(¢| on
a system prepared in state |},

/ I\ pAREGIN) = / ANAN'S(N — Ag)E(BIN, A")
- / AN O\ — z;(\))

- / IO — 2 1 (V)
= [(¢ly)*. (22)

5. Bell’s second model

Bell also published a second hidden variable theory for
spin—% systems, which was presented in the same paper
as his famous theorem [10]. As was the case in his first
model, two subsets of ontic states are employed in Bell’s
second model, so again we write A = A’ x A”. This time
however, the first set of ontic states, A’, are taken as
isomorphic to the set of points on the unit sphere. Thus
any given X € A can be represented by a unit vector, X'.
However, we will very shortly see that as in the case of
Aaronson’s model, the indicator functions of Bell’s sec-
ond model are dependent on the quantum state a system
is prepared in. Therefore, a complete description of the
system also requires a specification of a system’s quan-
tum state. The second set of ontic states, A”, is hence
also isomorphic to the set of points on the unit sphere
(since we only consider spin—% systems, this is equivalent
to taking A” = PH). A spin—% system prepared with
its spin oriented along a direction g is then taken to be
described by a pair (X’, X”), where X = 5, and X € A/
is chosen to lie, with equal probability, at some point in
the hemisphere of A’ defined by p. Thus a preparation
with Sp = p'is described by an epistemic state over A of|

- o o o 1 - . o
p(X X)X dX” = S —p) O(X' - X") dX'dX". (23)
™

Now consider performing a measurement for whether
or not the system’s spin lies along a direction ad. Bell’s
second model specifies that we receive a positive outcome
if the system’s ontic state X’ € A’ happens to lie in the
hemisphere centered on a vector @’. The vector @ is
obtained by rotating the system’s ontic state A" towards
d through an angle Z(1 — X’ . @). Thus the indicator
function for a measurement of spin up along direction @
is given by,

E(+aX, Xy =e(\ - @), (24)
the dependence on X’ being implicit within @. This

model reproduces the required spin-% quantum statistics
as we would expect,



/dX/dXH/J,(X/,)\7/|]7)§(+C_i|xl,X“) _

2i / AN 5 — PO - XMV - d)
™

_ i N7 N7 N
- 27T/d)\ o - PO - @)

wfﬁpa/ T
= / / sin 0 d0ds
6=0 ¢=0
50

= COS

Where (0, ¢) are polar coordinates and 6y, is the angle
separating the unit vectors p and a’.

As it stands, Bell’'s second model can be comfortably
expressed in the standard ontological model formalism.
However, a slightly modified version of this simple model
shows the limitation of the traditional formalism. In
the above model the probabilistic nature of the quantum
statistics derives from an uncertainty in the preparation
of a system’s ontic state (as can be seen from Eq. ([23])).
But it is also possible to reformulate the model so as
to move this epistemic uncertainty into a lack of knowl-
edge of how the measuring device is configured. Such a
possibility cannot be conceived of within the traditional
ontological model formalism, which only postulates on-
tic states for the system. Clearly one needs to extend
the formalism to include new ontic states ya( from a
new ontic state space 'y that act as a complete physi-
cal description of M. We will show in Sec. [V] how one
can introduce such an extension whilst still reproducing
quantum mechanical predictions.

It is also worth noting that, as in Aaronson’s models,
the measurement devices in both of Bell’s models exhibit
a dependence on the preparation device’s setting, but a
dependence that is mediated through the system’s ontic
state.

6. Aerts’ model

Our final example model is the strongest motivation
for the extension we outline in the next section. Aerts
has studied ontological models which are entirely incom-
patible with the standard ontological model formalism,
since they explicitly treat the measurement device at an
ontological level. We will consider the model given by
Aerts in [16, [17] for spin—% quantum systems. This model
attempts to reproduce the quantum statistics through a
rule for distributing small spheres of charge on a unit
sphere®. The preparation of a system S having spin along

8 In some instances, Aerts presents his model using a sphere with
non-unit radius, although this is an unnecessary generalization
for our purposes.

Zpa’ 9
: (29)

a direction 7’ is represented in the model by the placement
of a small sphere carrying a fixed positive charge +q at
point 7 on the unit sphere. The charge +q is in fact arbi-
trary, and therefore a complete description of S is given
by 7 alone. Thus the ontic state space A of the system is
isomorphic to the set of points on the surface of the unit
sphere and we can write the ontic state pertaining to S
as X € A. If the preparation device P prepares a pure
quantum state with Bloch vector 15, then the epistemic
state describing S will be,

n(N) dX = 6(X — ) dX. (26)

A measurement of the system’s spin along an arbitrary
direction @ is represented by placing another two small
spheres at positions +d, joined by a straight rigid rod
passing through the origin. These two spheres are also
charged with negative charges —s and —(1—s), where s €
[0,1]. The particular value of s is assumed to be unknown
to the experimentalist. These two charges, joined by a
rigid rod, constitute the measurement device, M, of the
model. Given this arrangement Aerts specifies that the
outcome of a spin measurement is determined by which of
the two charged spheres at +a exerts the greater force on
+q, consequently attracting it. If the charge +q ends up
moving towards the sphere at position @ then an outcome
of spin-up along @ is declared. If however, +¢ ends up
being attracted to the sphere at —a@ then ‘spin-down’ is
announced.

Now note that there is no epistemic uncertainty in the
ontological configuration of the system S; if one knows
Sp then one also knows the ontic state (see (26])). There-
fore, as in the Beltrametti-Bugajski model, the model
must implement indeterministic indicator functions over
A that directly mimic the quantum statistics that one
expects when measuring the spin along @ of a system
prepared according to z/_;,

. 0,
(@) = cos> TA (27)
Where 6, is the angle between the vectors X and @.

The epistemic states and indicator functions of Aerts’
model take essentially the same form as those from



the Beltrametti-Bugajski model and thus one might be
tempted to see the two models as equivalent. However
the models differ crucially in how they treat M. The
Beltrametti-Bugajski model does not specify the nature
of the indeterminism appearing in its indicator functions.
Aerts’ model meanwhile, exhibits a specific construction
for how these probabilities could arise from an epistemic
uncertainty of the configuration, s, of M.

It is clear from the description we have already given
that Aerts’ model provides more structure to the oper-
ation of M, structure that we need in order to be able
to distinguish it from the Beltrametti-Bugajski model.
To quantify this structure we will need to create the ex-
tension of the ontological model formalism that we also
found lacking in our discussion of the Bell model. We
now finally present this extension, which will also al-
low us to view contextuality as a restriction on inter-
actions between the ontic configurations of & and M (or
S and P in the case of preparation contextuality). In
Sec. [Vl we will return to Aerts’ model in detail, distin-
guishing between two different possible manifestations of
outcome determinism which we term micro and macro-
determinism (originally alluded to in Sec. [)).

IV. ONTOLOGICAL TREATMENT OF
MEASUREMENT AND PREPARATION
DEVICES

Our discussion so far has been greatly simplified by
considering preparation and measurement devices as ex-
ternal objects not thoroughly treated by the theory, much
as in an operational view of quantum mechanics. This
approach of only associating an ontic state space A with
the system S, has been the traditional approach for dis-
cussing ontological models. Let us now suppose that we
provide P and M (which, after all, are also physical sys-
tems) with the same ontological treatment as S, by in-
troducing two new sets of ontic states, yp € Ap and
Ym € Apg. The ontic states from these sets describe the
complete configurations of P and M respectively.

Recall that the settings Sp and Sy denote configura-
tions of the devices when they are set to perform certain
preparation or measurement procedures. There are many
different ontological configurations of M that we could
imagine being consistent with it still performing the same
measurement and thus being set according to the same
Sn. For example, if we simply changed the color of the
paint on M then its ontological configuration - being its
complete description - would change, but of course the
measurement it performs, and thus the setting Sy de-
scribing it, would not be expected to change. Therefore
we can think of settings of P and M as defining subsets
of their ontic state spaces. We denote the equivalence
classes of ontic states consistent with settings Sp and
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Sam (possibly implemented according to some context?)
by Sp C Ap and Sy C Aprg. One thing worth noting
about this idea of ‘setting subsets’ is that subsets cor-
responding to different settings of either P or M will
necessarily be disjoint; Sy N Sy =0 and Sp NS, =0
for Sy # S and Sp # Sp. This should be true since
knowledge of the ontic state of a device (being a com-
plete specification of its realistic description) allows us
to completely and uniquely infer the device’s setting.

How do preparation and measurement procedures on
a system S appear in terms of I'p and I'y(? Perform-
ing a measurement on S involves an interaction between
the ontic states of S and M, an interaction ultimately
allowing an observer to infer pre-measurement informa-
tion about the ontic state of S from some macroscopic
property of M. Similarly, a preparation of S corresponds
to an interaction between ontological configurations of &
and P. Clearly then, the occurrence of measurement and
preparation procedures in an ontological model are cru-
cially dependent on how the model relates Ap, A and
A In order to be clear about what assumptions we
make about such relations we will begin with a very gen-
eral picture - one in which the three ontic state spaces
do not even individually exist - and gradually refine it
by applying appropriate assumptions on how they can
interact. Eventually we arrive at a formalism in which
the ontological role of M (and P) within the standard
formalism from Sec. [l is clear.

The most general possible description of P, S and M
is one in which the three systems are represented by a
single non-separable reality, so that we cannot even talk
about individual systems P, S, M or their individual on-
tic state spaces. Then the best we can do is to speak of a
single ‘global’ ontic state space I', containing ontic states
v which describe a configuration of the whole P,S, M
scenario. We then have epistemic states u(v|Sp,Sim)
encoding the probability of preparing a particular v € T’
given some settings Sp and Sy of P and M. Similarly
the indicator functions £(j|v) in such a non-separable
model denote the probability of obtaining some outcome
j of a measurement corresponding to setting S given a
particular v. The statistical predictions of such a model
are given by;

Pr(j|Sp, Saq) = /dw<u|sp,sM>5<j|u>. (28)

9 The Definitions [71and @] that we shortly give for preparation and
measurement contexts show that, strictly speaking, any change
of the ontic configuration ypq of M corresponds to a change
of measurement context. Thus even apparently trivial changes,
such as the color of the paint on M, actually constitute differ-
ent measurement contexts. However, we will be interested in
changes of M'’s configuration that allow one to prove measure-
ment contextuality, and in general such contexts will correspond
to macroscopic alterations of M’s state. Generally then, a mea-
surement context will define a subset of ontic states contained
within the set S associated with a given setting Sp.



Note that we do not write £(j|v) as depending on Sy
since here we are allowing for the more general case,
where the indicator function not only depends on the set
of ontic states defined by a setting S, but potentially on
individual ontic states themselves - albeit non-separable
ones, V.

In such non-separable models it is hard to build any
intuitive picture of reality whatsoever, with even the con-
cepts of system, preparation and measurement devices
making little sense!’. Consequently, all existing models
assume a separable picture of reality for P, S and M.
This amounts to the assumption that the ‘global’ ontic
state space of the three systems can be written as a carte-
sian product of ontic state spaces for each individual sys-
tem, I' = Ap x A X Apq, so that v = (yp, A, 7m1). Models
employing this assumption are constrained to reproduce
quantum statistics according to,

Pr(j[Sp. Sn0) = |
P,S,M

(29)

Where we adopt the shorthand [, 5 = [ dypdAdyasm.

The model thus now employs epistemic states
w(yp, A\, Yym|SpP, Sm) and indicator functions
(P, Ayym) which treat P, § and M as having
separate ontic states. Thus we have arrived at a formal-
ism incorporating models in which indicator functions
are dependent on the settings of both the preparation
and measurement devices. This formalism allows for
cases where, unlike Bell’s second model and those con-
sidered by Aaronson, a dependence on Sp is not simply
mediated through the ontic states of S. In fact Eq. (29)
can describe cases of even greater generality, wherein
measurement outcomes are dependent on individual
ontic states of P and M, not just the sets of ontic states
defined by their settings.

Eq. 29) employs single joint distributions over the
ontic states from all three systems, implicitly allowing
for the possibility that there is a statistical dependence
between the ontic states of each system. There are a
few reasonable assumptions that we can make about the
statistical relations that might exist between the sys-
tems. The validity of these assumptions can ultimately
be called into question, but in fact our motivation for
using the formalism is precisely so that we can study the
ways in which such assumptions may fail to do justice to
our universe. The hope is that we can pinpoint precisely
which assumptions are the troublemakers.

In most models, the configuration of a preparation de-
vice is taken to only indirectly affect the outcome of any
measurement via its influence on the system S. Our sec-
ond assumption (after separability), is therefore a statis-
tical independence between M and P. Then not only are

10 See [2] and [25] for a discussion of the history of non-separability
in realistic interpretations of quantum mechanics.

w(vp A, Yl Sp, SA)EG A, A vp).
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the ontic configurations of the two devices independent
of each other, but furthermore the outcome of a mea-
surement exhibits no direct statistical dependence on the
preparation device’s ontic state - any such dependence
having to be mediated through S§. Under this assump-
tion, Eq. (29) becomes,

/’L(’Y'P7 A77M|SP7 SM)&(.”)‘?VM)

Pr(jlsp.Sn0) = |
P,S,M

_ /M(A,7M|SP,SM)§(]'|)\77M)- (30)

P

Where in the second line we have marginalized over
the dependence on the vp, which (given our most recent
assumption) only appeared within the epistemic state
/’L(’Y'P7 )‘7 Y |S'P7 SM)

Although we can also consider an ontological treat-
ment of P, for brevity we will now focus our attention
solely on the measurement device. To this end we can use
an identity of probabilities to write p(A, Y| Sp, Sm) =
wyml|Se, Sam) (A Sp, Snm), allowing us to further sim-
plify @0) to,

Pr(j|Sp, Sat) = / Hrat Sa NS SAOEGIN Ar0).

S,.M

(31)
Where we have again used our assumption of statisti-
cal independence of P and M to write u(ym|Sp, Spm) =
1(ym|Sm). Note that the epistemic state (A Sp, Si)
allows the A € A to depend on the setting Spq of M.
This kind of dependence is a formal expression of what
will introduce in Sec.[V Bl as ‘\-contextuality’ - one of the
possible ways of implementing the kind of contextuality
required by the Kochen Specker theorem within the onto-
logical model formalism. For the kind of models that we
consider, we make the explicit assumption that this kind
of dependence does not occur (as we justify in Sec. [VB),
so that which X\ € A applies to S is not dependent on the
ontic state yp describing M. Enforcing this assumption

we therefore obtain,

Pr(j|Sp, Sai) = / H(v SO OSPIEGIA Ta0).

S,M

(32)
This is precisely the form that we need in order make
it clear how the traditional formalism can be adapted to
provide an ontological model for the measurement device
as well as the system. Given knowledge of the measure-
ment setting Saq describing M, we obtain a distribution
w(ym|Sam) over its ontic states. The particular ontic
state describing M, along with A € A, then determines
the outcome it produces - as is clear from the form of
the indicator function £(j|A, ya1). This formalism allows
us to describe ontological models such as that of Aerts,
which provide a more thorough realistic treatment of M.
We explicitly show how Aerts’ model can be expressed

according to ([B2) in the next section.
The expression in ([B2]) thus shows how the standard on-
tological model formalism would look if it were furnished



with an ontological model for M. We can return to our
completely standard formalism (as introduced in Sec. [II))
by making one final assumption; that the measurement
outcome depends only on the measurement setting of M
and not on the particular ontic state yr¢. We can employ
this assumption by marginalizing the indicator function
over Yam € Sa, to give a ‘coarse-grained’ distribution, &,

EIA Sp) = / iy €GN ) il Sna). (33)

YMESMm

In doing this we are essentially eliminating the need for
a model of M. Eq. (32) then becomes,

Pr(j|Sp, Sat) = /S HOISPIEGIA Sn). (34)

Which is precisely our original formalism, as first in-
troduced in @]). Clearly the implicit assumptions in this
standard formalism, highlighted in our above derivation,
leave it unable to describe a significant class of models,
including those of Aerts and the adapted version of Bell’s
second model.

Note that although here we have focused on showing
how a measurement device can be furnished with an on-
tological treatment, it is clear that we can provide an
ontological treatment of the preparation device in an ex-
actly analogous manner. This would lead us to introduce
a set of ontic states yp € I'p and an epistemic distri-
bution, u(yp|Sp) describing our knowledge of the ontic
configuration of P given that it is configured according
to a setting Sp.

A. Models that measure with uncertainty

Eq. (32)) is exactly what we need to completely describe
Aerts’ model, which we found ourselves ill-equipped to
deal with in Sec.

Recall that Aerts’ model aims to reproduce measure-
ments made on a spin—% system, representing a measure-
ment of spin along direction @ by spheres with negative
charges of magnitudes s and 1 — s lying at points +a on
the unit sphere and being connected by a rigid rod. The
value of s is chosen uniformly at random from the inter-
val [0, 1]. Further recall that a system prepared according
to |¢) is measured as having spin-up (spin-down) along
a if the net Coulomb force on a sphere with charge —+g,
located at point 1/7 on the unit sphere, attracts it towards
the negatively charged sphere located at @ (—a). The
epistemic states and indicator functions of Aerts’ model
are as given in (26) and 27)). The key difference between
the model of Beltrametti-Bugajski and that of Aerts lies
in the way that Aerts’ model treats the measurement de-
vice, since it introduces an ontic state space for M. The
ontological configuration of M consists of a specification
of the arrangement of negatively charged spheres consti-
tuting the device. To completely specify this arrange-
ment requires stating the orientation of the rod holding
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the spheres and the value of s € [0,1] determining the
charge held by the spheres. Thus the ontic state space

of M consists of two subspaces; I'yq = Fg\l/[) X Fs\%{), and

we write the respective ontic states as Yy € 1"5\1/[) and

5 € F&\Q/t) so that ya € T pq is written as ya = (Y4, 8)-
The first subspace, I‘S\l/l), is isomorphic to the unit sphere,
and Y is simply taken to be the vector @ defining the
rod’s orientation. The second subspace, I‘Ea), is given by
the unit interval, with s being the charge on one of the
spheres.

Now in Aerts’ model, it is assumed that the value of s,
although it takes some definite value, is not known by the
experimenter!'’. Thus there is an epistemic uncertainty
with respect to the precise configuration of M. There-
fore, following the formalism of this section, we introduce
an epistemic state p(ya|Sa) describing the configura-
tion of the measurement device. Since the measurement
setting Sy of M is given by the direction @ (along which
we wish to measure the system’s spin) and s is taken to
be drawn uniformly at random from the interval [0, 1],
we have that,

w(YmlSam) dyam = 6(Fm — Sam) dynm ds. (35)

To complete the ontological description of M we need
an indicator function specifying the outcome that M will
produce for given ontic states of S and M (of course
the production of an ‘outcome’ by M is actually a cer-
tain evolution of M'’s ontic configuration). In Aerts’
model a measurement outcome is determined by the rel-
ative strengths of the Coulomb attraction F_, (acting on
charge +q at z/; due to the charge —s located at —a) and
the Coulomb attraction Fy (due to the charge —(1 — s)
located at @). Specifically, an outcome corresponding to
spin-up along @ will occur if F,, > F_,. Using Coulomb’s
law, this requirement becomes [17],

5q (1—s)q
Teg sin? (Bayp/2) ~ meo cos?(Oay /2) '

(36)

Where we have denoted the angle separating the unit
vectors @ and 1E as Ogy. According to Eq. (30), indepen-
dently of ¢, an outcome of spin up along d@ requires that
we have s > sin? 644 /2. Therefore the indicator function
&(+d|ym, A) (for the outcome corresponding to measur-
ing spin-up along direction @) can be written as,

E(+dlym, A) = O(s — sin? &%)
Os+1iX-Fm—1). (37

Suppose we were to choose to coarse-grain over M’s
ontic configuration, effectively ignoring any information

11 Aerts actually suggests a physical reason for this within the con-
text of his model, but this is not of importance here.



we have about its ontological model. Following (33) we
obtain an indicator function of the following form,

E(+alA Su) / dyat | Sa) €+ pns A)

[ s (5 = S0 €(Haa N
/ds O(s — sin? &%)

90/ p
= cos® L. (38)

This is precisely the ‘trivial’ indicator function that we
attributed to Aerts’ model in Sec.

Aerts’ model thus shows how introducing I' v, allows us
to reproduce quantum statistics through a lack of knowl-
edge of how measurements are implemented. In fact,
Aerts’ model raises an interesting question about what
outcome determinism really means in models providing
a full treatment of M.

Previously we thought of an ontological model as
being outcome deterministic if it implemented idem-
potent indicator functions, so that &2(k|\,Sn) =
E(k|X, Sam) YA, k, Saq. But in light of our previous discus-
sion we now know that an indicator function &(k|X, Sa)
can actually depend not just on the setting Sa,, but po-
tentially on the individual ontic states yar € Saq. One
can therefore consider classifying indicator functions by
how they treat individual ontic states of the measure-
ment device. Clearly a deterministic indicator function
must assign a constant value of either 0 or 1 to all yaq
corresponding to a certain measurement setting - i.e. all
Ym € Spy must be treated identically. In such a case,
knowledge of the particular Yo € Saq pertaining to M
does not help one determine the outcome of a measure-
ment any better than simply knowing the setting Saq.
We refer to a model which is outcome deterministic in
this manner as being macrodeterministic,

Definition 4 An ontological model is said to be
macrodeterministic if all measurement outcomes are
determined given knowledge of the state of a system and
the macroscopic configuration of the measurement device,
Sam.- iee,

and,

€GN Y Saa) = €GN, Sm) Y ym € S (40)

The idea being that measurement results in such out-
come deterministic models are macroscopically deter-
mined by the setting Saq, being insensitive to the pre-
cise ontic state of M. It is of course alternatively pos-
sible that the outcome of a measurement might be com-
pletely determined only if we know the specific ontic state
Ym € Taqg of M as well as A € A. In these models,
specifying S isn’t enough, and measurement outcomes
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are determined by the ‘microscopic’ ontological config-
uration of M. Thus we term this class of models mi-
crodeterministic,

Definition 5 An ontological model is said to be mi-
crodeterministic if the outcome of a measurement is
not completely determined by knowledge of the measure-
ment setting Sy of a device M, but is furthermore de-
pendent on the ontic configuration Yy € Saq of M. i.e.,

and

for some Y, Y g € Sa.

Thus a microdeterministic model allows us to determine
definite outcomes for measurements so long as we know
the precise ontic configuration of the measuring device.

Now the interesting point to note [16, 126] is that mi-
crodeterministic models appear outcome indeterministic
if we coarse-grain over I'pq. That is to say that if
measurement outcomes are dependent on the individ-
ual yp € T'aq but we are ignorant of the exact value
of ya1, then the best we can do is assign probabilities for
measurement outcomes based on our restricted knowl-
edge. If a model is microdeterministic then although
we may have £(j|A, yam, Sam) € {0,1}, the marginalized
state g(j|)\, Sam) can, in general, only be expected to sat-
isfy 0 < £(jIA, Saq) < 1 (see B3)). This is illustrated
nicely by Aerts’ model, which falls into the class of mi-
crodeterministic models. Knowledge of s is crucial in
order to determine a measurement outcome, and upon
marginalizing £(j|A, Y, Sam) over ya € Spaq we obtain
an indeterministic indicator function.

Thus we see a mechanism by which a determinism - ap-
parently inherent as seen from the traditional ontological
model formalism - can actually arise from an epistemic
uncertainty regarding the precise configuration of a mea-
surement device. This possibility has been investigated
in rigorous mathematical detail by Coecke |26, 27].

V. CONTEXTUALITY

So far we have developed a way of describing reality
according to ontological models, but that does little to
tell us what kind of reality any particular ontological
model might describe. This information is expressed by
the structure of its ontic state space, A. Remarkably,
there exist arguments constraining the structure of any
realistic interpretation of quantum mechanics (including
ontological models) to possess certain properties, such as
nonlocality (Bell’s theorem [10]) and contextuality (the
Kochen Specker theorem [12]). As described in the intro-
duction, a key motivation for studying ontological models
is to identify such properties. Thus a pertinent question



is how known properties are manifested within the onto-
logical model formalism, a question which we address in
this section for the case of contextuality. Contextuality
has been the subject of much debate (see [14] and [24]
for contrasting views) and 40 years after its inception it
is still not clear what its necessity can teach us about
realism in quantum mechanics. After reviewing the idea
of contextuality we will use our extension to the onto-
logical model formalism (from Sec.[[V]) to show how it is
specifically manifested within these models. We are led
to conclude that contextuality, as it stands, can be im-
plemented as a very intuitive and unsurprising dynamical
constraint. But the effect of contextuality on ontological
models can be more subtle, and in Sec. [VI] we will show
how it implies a property which we call deficiency. As
we discuss in Sec. [VTAl deficiency prevents a natural
relationship between preparations and measurements in
quantum mechanics from being carried over to ontolog-
ical models. We consider this to be one case in which
contextuality can quantitatively be seen to give rise to
unexpected behavior.

A. What is Contextuality?

Contextuality has a long history, beginning in 1967,
when Kochen and Specker (KS) [12] first introduced a
notion which, following [3], we refer to as traditional
contextuality'? (TC). Consider performing a projective
measurement |¢)(¢)| on a system. In a two dimensional
Hilbert space such a projector can be uniquely imple-
mented by a measurement procedure with outcomes cor-
responding to [¢) and [i)1) (where (1)) = 0). How-
ever, in a Hilbert space with dimension greater than two,
there is no unique way to physically implement such a
projector onto a single quantum state [¢). In an N di-
mensional Hilbert space (N > 2) one implements |1){1)]
as part of an N outcome PVM, where each outcome cor-
responds to one of N orthogonal basis states. Since there
are a continuum of N dimensional bases containing the
vector [1), there exist a continuum of PVM measure-
ments that can realize the projector |1){(¢)]. KS refer to
the different PVMs that contain a given rank one projec-
tor |¢)(y| as the contexts of that projector.

In any outcome deterministic and realistic view of na-
ture (regardless of whether or not it can be formalized
in terms of an ontological model), a projector P is at all
times assigned a definite outcome ‘value’, v(P) € {0,1},
even before it is measured. KS considered the possibility
that a realistic outcome deterministic theory might have
to ‘change its mind’ about whether a value 0 or 1 is as-

12 This has commonly been referred to simply as contextuality, but
we reserve this term for the more general notions of contextuality
that we introduce in Definitions [8] and [IQl (originally introduced
in [3]).
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sociated with a projector P dependent on which PVM
is used to implement it. Such a dependence is what we
refer to as traditional contextuality;

Definition 6 An outcome deterministic ontological
model is said to be traditionally contextual (TC) if
there exists at least one projection operator, P, such that
the pre-determined outcome v(P) associated with P is
dependent on which PVM is used to implement it.

TC therefore tells us that specifying that a measure-
ment device is configured to measure a projector P is not
sufficient in order to uniquely identify the ‘real’ value
assigned to the result of its measurement. Rather we
must specify the whole PVM that we would set M to
measure. Incredibly, KS managed to show that TC, so
defined, must be possessed by all outcome deterministic
realistic theories reproducing the (experimentally veri-
fied) predictions of quantum mechanics. We reproduce
their ingenious proof in Appendix [A], translated into the
language of the ontological model formalism.

In one sense, KS’s proof of TC is extremely general.
Associating a pre-existing value v(P) to a projector P is
a requirement of any realistic outcome deterministic the-
ory and therefore TC is defined (and proven by KS to be
necessary) for any such theory, not only those that can
be expressed in the ontological model formalism. There
are however, a few shortcomings of TC. Definition [l only
applies to systems described in quantum mechanics by
a Hilbert space of dimension greater than or equal to
3. Furthermore, it applies only to outcome determinis-
tic realistic theories. Yet as was emphasized by Bell [2§]
and discussed in Sec. [[I an assumption of outcome de-
terminism is quite distinct from one of realism. Another
shortcoming of T'C is that changing the PVM implement-
ing a projector is not the only change of M’s setting
that quantum mechanics predicts should leave measure-
ment outcome statistics unaltered. For example there are
many different ways of convexly decomposing elements of
a given POVM measurement'?, each of which provides a
different experimental arrangement in which one could
physically measure the same POVM elements.

Thus there are several reasons why TC appears a some-
what restricted notion of contextuality, and one is led
to wonder whether it is possible to generalize the idea.
Such a generalization was provided by Spekkens in [3].
To begin with, one can broaden the definition of a mea-
surement context 3],

Definition 7 The possible contexts of the outcome of a
measurement performed by device M are all those mea-

13 Although the term ‘convex decomposition’ does not have a
unique usage in the literature, we will say that a POVM E© =

{E,(co)};c can be convexly decomposed in terms of a set of other
POVMs EM E®) . EW) if each of its effects can be written
in the form E'IEO) = lN:l piEl(j) with {p; ﬁvzl forming a valid
probability distribution.



surement settings Saq which do not alter the frequency of
the outcome when the measurement is performed on any
particular preparation of a system S.

Different measurement procedures in quantum theory
will give the same outcome statistics so long as they are
all described by the same POVM element. Any different
settings Sy resulting in an outcome being described in
quantum mechanics by the same POVM (although per-
haps written in another form) are therefore, according to
our above definition, different contexts of that outcome.
We have already mentioned measurement contexts as-
sociated with different PVMs realizing a given projector,
and different convex decompositions of a POVM. By Def-
inition[d there are clearly innumerable other possible con-
texts. The macroscopic nature of M ensures that there
are a multitude of degrees of freedom one can manipulate
whilst effectively leaving the measurement operation of
the device un-altered. Of course many of these contexts
would be hard to formally quantify, and we restrict our
consideration to those contexts that can be described in
a meaningful manner.

We can use Definition [Tl to introduce a generalized no-
tion of measurement contextuality for both outcome de-
terministic and indeterministic ontological models [3],

Definition 8 An ontological model is said to be mea-
surement non-contextual if it only associates a single
indicator function &(k|X, E) with a given POVM element
Ey, regardless of its context. Conversely a model is said
to be measurement contextual if the indicator function
that it assigns to Ej, depends on its context, i.e. if there
exist Spq, S such that (kN E,Sym) # (KN, E, Shy)
(with Sypq and Sy, representing different measurement
contexts of the POVM effect Ey).

According to this new definition, measurement contex-
tuality is a non-equivalence of a model’s mathematical
representations of those measurements which quantum
mechanics treats as being operationally identical. As we
noted previously, one can conceive of many different mea-
surement contexts and an ontological model could poten-
tially exhibit measurement contextuality with respect to
any of them. Therefore we must take care to specify with
respect to which context we might consider measurement
contextuality at any given time. As shown in |3], Kochen
and Specker’s TC is now seen to be a special case of this
generalized measurement contextuality. Specifically, TC
corresponds to ‘measurement contextuality with respect
to the choice of PVM’ in models that exhibit outcome
determinism for projective measurements.

In fact, following [3], we can widen our concept of con-
textuality even further by adapting Definition [l to apply
to preparations. We define a preparation context as fol-
lows,

Definition 9 The possible contexts of a preparation
performed by device P are all those preparation settings
Sp of P which prepare a system S in states all yielding
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identical measurement statistics for any particular mea-
surement performed on them.

Preparations that are described in quantum theory by
the same density operator always yield the same measure-
ment statistics. Thus different settings Sp of P described
in quantum theory by the same density operator (albeit
perhaps the same density operator written in a different
form) are contexts of that preparation. As was the case
with measurement contexts, there are many ways one
could vary Sp without altering the density operator de-
scribing the measurement. For example, there are many
different ways of convexly decomposing a mixed state
density operator p. Each of these provide a distinctly
different probabilistic preparation procedure realizing p,
but yet all result in the same statistical predictions for
any measurement. Thus different convex decompositions
of a density operator form different contexts of a prepa-
ration.

Definition [@ puts us in a position to consider the pos-
sibility of preparation contextuality within ontological
models 3],

Definition 10 An ontological model is said to be prepa-
ration mnon-contextual if it only associates a single
epistemic state u(A|p) with a given density operator, p,
regardless of the preparation context. Conversely a model
is said to be preparation contextual if the epistemic
state that it assigns to p depends on its context, i.e. there
exists Sp, Sp such that p(Ap, Sp) # u(A|p,Sp) (where
Sp and Sp represent different preparation contexts that
realize the density operator p).

It should be noted that there are cases where these gen-
eralized definitions of preparation and measurement con-
textuality are genuinely independent of each other. The
Beltrametti-Bugajski model for example exhibits prepa-
ration contextuality with respect to the convex decom-
positions of a mixed state, but does not exhibit measure-
ment contextuality in the generalized sense of Definition
Bl To see this, note that in the Beltrametti-Bugajski
model a convex decomposition p = 3. p;i|¢;) (s of a
mixed state p into a set of pure states corresponds to an
epistemic state pu(A|p) = >, pid(A — Ay) (see Lemma
in Appendix [B] for a justification). Clearly then, differ-
ent convex decompositions of p will give epistemic states
having different supports, since the elements of the de-
composition are precisely the ontic states. Hence we
have preparation contextuality. Conversely, the model
will never exhibit measurement contextuality since the
indicator function it associates with a measurement is
formed directly from that measurement’s quantum me-
chanical statistical predictions. This clearly implies, ac-
cording to Definition[7] that the Beltrametti-Bugajski in-
dicator functions will remain unaltered under any change
of context.

For a more in-depth example of contextuality, we can
consider the KS model, first introduced in Sec. This
exhibits both preparation and measurement contextual-
ity. Its preparation contextuality is with respect to the



different possible convex decompositions of a mixed state.
To see this, consider a mixed state described by a den-
sity operator p which can be prepared by either of the
following two convex decompositions,

p = 20001+ 7101
= SEE - BeE @

Where | £ §) = cos §|0) & sin [1). Denote the prepa-
ration setting that implements the first of these convex
decompositions as Sp, and that which implements the
second decomposition as S%.

Lemma [ in Appendix [Bl shows that an ontological
model is constrained to employ epistemic states for each
of these settings that respect the convex structures in

@3),

p(Np, Sp) = Su(N0) + Ta(A1)
B, Sp) = suOIE) +5uM = ). (44)

Now recall that in the Kochen Specker model, the epis-
temic state associated with a quantum state has a sup-
port equal to the hemisphere defined by the quantum
state’s Bloch vector. These hemispheres are such that,

Supp(u(Alp, Sp)) = Supp(p(A|0)) U Supp(p(A|1))
= Supp(©(0-X) +O(T- X))

and

)

Supp(u(Alp, Sp)) = Supp(u(A|F)) U Supp(u(Al — %))
= Supp(©(£ - X) + O(—Z - X))
c A. (46)

—

Where 6, T, % and —g denote the Bloch vectors asso-

ciated with the states |0),/1),[5) and | — §) respectively.

Thus Supp(p(Alp, Sp)) # Supp(u(Alp, Sp)), and con-
sequently, according to Definition[I0] the Kochen Specker

model is preparation contextual. More specifically, note
that (@0) and ([@6) imply that there are cases wherein the
model realizes this contextuality by changing the support
of an epistemic state as the preparation context changes.

Now consider measurement contextuality in the KS
model. To begin with, note that since the model is for a
two dimensional Hilbert space it cannot possibly exhibit
TC (in fact this was Kochen and Specker’s motivation
for presenting this model). However, the model does dis-
play measurement contextuality with respect to convex
decompositions of a POVM. Furthermore, the KS model
implements this measurement contextuality by changing
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the support of an indicator function as the measurement
context is altered. We can see this by employing pre-
cisely the same kind of construction as we used to show
its preparation contextuality. Specifically, consider the
POVM {E;, E2} where the POVM elements have a com-
putational basis matrix representation of,

3 1
=0 0
= 4 — 4

In particular, consider the element F;. Two possible
ways in which we can realize this in terms of projective

measurements are,
1
Ey = 70)(0] + 2 [1){1] (48)

D+l -D-E ()

N = W

Eqgs. (@]) and (@3] describe two different ways of perform-
ing a measurement for whether or not a system would
yield the POVM outcome F;. Eq. [ @8] corresponds to a
measurement procedure in which we perform the PVM
{]0)(0[, |1)(1]}, yielding an outcome of either ‘0’ or ‘1’.
We then randomly choose, according to the distribution
{%, % , whether either the ‘0’ or ‘1’ outcome will lead us
to declare a positive outcome for F;. The second decom-
position, Eq. (@), stipulates that we perform a similar
protocol only this time we measure {|Z)(Z[,| — 5)(—%|}
and select which outcome should give F; from a uniform
distribution. Denote the configurations of M that realize
@8) and [@9) as Srq and S’ respectively. Given the re-
lations in Eqs. (@8)) and (@9]) the KS model is constrained
to employ indicator functions satisfying (see Lemmal@lin

Appendix [B]),
3 1

EESh) = SEEN + 26-EN. (650)

In the KS model, the supports of indicator functions
associated with projective measurements are hemispheres
defined by the Bloch vector of the state onto which they
project. As before, the hemispherical supports of these
distributions are such that,

Supp(§(E1|A, Sam)) = Supp(£(0]A)) U Supp(£(1[A))
= Supp(O(0-X) +6(1- X))
— A, (51)

and,

Supp(£(E1|A, Sy ) = Supp(€(F|A)) USupp(¢(—3%|A))
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Thus Supp(§(E1[A, Sm)) # Supp(§(E1[A, S)y)), and
we see that in some cases the KS model implements mea-
surement contextuality by having an indicator function’s
support depend on the measurement context.

Having seen these examples, one might wonder to what
extent ontological models must exhibit these generalized
kinds of contextuality. In fact Spekkens has shown in
[3] that any ontological model associating deterministic
indicator functions with projective measurements must
exhibit measurement contextuality with respect to differ-
ent convex decompositions of a POVM'. Furthermore,
any model must exhibit preparation contextuality with
respect to different convex decompositions of a density
operator.

Thus the epistemic states and indicator functions that
an ontological model associates with certain preparations
and measurement outcomes must change dependent on
the context that realizes them. It is worth noting that,
although it was the case in the KS model, such a depen-
dence does not necessarily require the supports of epis-
temic states or indicator functions to change. i.e. we
may not necessarily have a change in which ontic states
could have been prepared by a preparation or might pro-
duce a given measurement outcome. Instead it could be
that only the non-zero probability assignments are altered
for some context-independent set of ontic states. The
case is, however, more clear-cut within those ontological
models that are outcome deterministic. Then measure-
ment contextuality requires that indicator functions must
change their supports since deterministic indicator func-
tions only assume values of 0 or 1. Any change in their
assignments amounts to a change of support!

Although the kinds of measurement and preparation
contextuality introduced in Definitions B and [I0] are the
only kinds of contextuality typically considered, there is
another interesting possibility. Recall that Acarinoses’s
indicator functions are dependent on the quantum state
that a system is prepared in, and therefore are dependent
on the preparation setting Sp. These models thus intro-
duce the possibility of a strange kind of contextuality
in which the indicator function associated with a mea-
surement is dependent on the setting used for a system’s
preparation. In Aaronson’s model this kind of contex-
tuality is somewhat trivial, since Sp is in fact an ontic
state, so it is entirely natural for the indicator functions
to be dependent on the setting of P. In fact, as was seen
in Sec.[[V] most models implicitly assume a lack of direct
statistical dependence between P and M, so this strange
contextuality will only ever apply to a small subset of
ontological models.

14 Note that the Beltrametti-Bugajski model does not exhibit any
kind of measurement contextuality. This is not in contradiction
with either the KS proof or these proofs of generalized contextu-
ality, since the model employs indeterministic indicator functions
for projective measurements, rendering it outside of the scope of
all known contextuality proofs.
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B. What does contextuality mean?

In Definition [6] we gave a mathematical definition of
TC, and in Definitions [} and [I0] we generalized the no-
tion to preparation and measurement contextuality. But
we still lack a clear picture of exactly what it is that
these ideas of contextuality really mean in our ontologi-
cal model formalism - what kind of structure might they
enforce on the ontic state space A and its dynamics? Un-
derstanding this is crucial for us to even begin to judge to
what extent contextuality, like nonlocality, goes against
our intuition and might fundamentally prohibit a realis-
tic view of the quantum world.

First consider TC in our ontological model formalism.
It is clear that, since the definition of this property relies
crucially on assigning definite values to projective mea-
surements, it can only make sense in outcome determinis-
tic ontological models. We therefore temporarily restrict
ourselves to such cases. But even under a deterministic
restriction our ontological model formalism does not ex-
plicitly talk about ‘assigning outcomes’ to measurements,
as Definition [6] does. Rather our formalism employs in-
dicator functions; assigning outcomes dependent on the
ontic state of S. How then can we import TC into our
formalism?

There are two ways that TC can be manifested within
an ontological model. Consider a system &, described
in quantum mechanics by a three dimensional Hilbert
space. Suppose that this system actually resides in an
ontic state A and that we use a device M to perform a
projective measurement Py = |0)(0| on §. Now consider
two settings Spaq and S, of M that can realize this mea-
surement, taken to respectively correspond to the PVM
contexts { Py, P1, P} and { Py, P{, Py}. In an outcome de-
terministic ontological model, what outcome is assigned
to projector Py (what we might refer to as v(FPp)) is de-
termined by whether or not A € Supp (§(FPp|A)). Hence
in order for the outcome assigned to Py to be dependent
on the PVM setting (as required by TC), our model must
ensure that the inclusion of X in Supp (E(Po|N)) is depen-
dent on this setting. We explicitly derive this require-
ment in Appendix [A], where we recreate the original KS
argument for TC in the ontological model language (as-
sociating a deterministic indicator function &(P|\) with
a projective measurement P, as opposed to a ‘value as-
signment’, v(P)). Clearly there are two ways in which
the inclusion of A in Supp(§(FPo|A)) could change; either
by changing Supp(¢(Pp|\)) or by changing A. We can
classify ontological models according to which of these
possibilities they use to realize TC,

Definition 11 An ontological model is said to be &-
contextual if it realizes traditional contextuality by
changing the support of an indicator function as the set-
ting of M changes, Syx — S’y

Definition 12 An ontological model is said to be A-
contextual if it realizes traditional contextuality by



changing the ontic state associated with a system as the
setting of M changes, Sp — S’y

In £-contextual models we have that a change of M’s
setting simply changes the indicator function associated
with M, thus changing how M will respond to & dur-
ing the measurement process. In A-contextual models
however, a change of measurement setting can result in
the ontic configuration of the system S being changed
- a potentially nonlocal effect if S and M are space-
like separated. Two models that differ only in which
of these approaches they use to realize TC are, ac-
cording to Definition Bl ontologically equivalent. The
A-contextual versus &-contextual distinction is thus a
purely metaphysical one; for any model implementing \-
contextuality there is an entirely equivalent model that
implements &-contextuality. Bearing this in mind, we
can justify the assumption we made in Sec. [V} that
w(A|Sp, Sam) = u(A|Sp). Throughout the remainder of
the paper we continue to assume that TC is always im-
plemented through &-contextuality.

Having discussed the manifestation of TC we now turn
to the generalized notions of preparation and measure-
ment contextuality given in Definitions §] and [0l Un-
derstanding these types of contextuality requires using
the ontic state spaces I'p and I'y for P and M that we
outlined in the formalism derived in Sec. [Vl To begin
with, refer to Eq. (32) from that section. This shows ex-
plicitly that the measurement process within an ontolog-
ical model amounts to an interaction between the ontic
states of & and M. Specifically, the indicator function
E(FIN,vm) tells us whether the result of an interaction
between a given A € A and ya € S would leave M in
a configuration such that we would infer the j** measure-
ment outcome to have occurred. Now recall that a change
of context implies a change of the device setting Sy and
consequently a change of M’s ontic state, yao¢. Contex-
tuality requires that £(j|\, Spq) changes along with Sy.
Thus contextuality actually imposes a restriction on the
interaction between S and M. In particular, the interac-
tion - encoded within £(j|A, Saq) - must change for any
change of ya¢ that corresponds to an alteration of mea-
surement context.

The conclusion of this brief analysis, which can sim-
ilarly be performed for P, is that the requirements of
contextuality can be satisfied by the completely natu-
ral arrangement that the interaction of M and S be de-
pendent on the configuration of M. A trivially simple
example of how contextuality can in principle be mani-
fested in this natural way can be found by introducing
ontic states I'p and I' o4 to the KS model from Sec.
In Sec. VA] we saw how the KS model exhibits con-
textuality for convex decompositions of POVMs by hav-
ing an indicator function £(k|\, E) change dependent on
whether E is performed using a setting Sa4 in which ei-
ther |0)(0] or [1)(1] is measured or a setting S’ ; in which
either [5)(§| or | — §)(—F/| is measured. Suppose that
we adopt an ontological model for measurement devices
within the KS model where 4 is given precisely by the
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Bloch vector associated with the projective measurement
that M is configured to perform. We can then explicitly
see that the two different settings of M correspond to
different ontological configurations of the measurement
device; Yu € {6, f} for setting Spq and Y € {g, g} for
setting S’,. Thus contextuality simply amounts to the
measurement outcome being dependent on the ontologi-
cal condition of M.

The discussion in this section suggests contextuality to
be an entirely natural requirement of realistic theories, in
no way comparable to the un-intuitive nature of nonlo-
cality. This is an intuition which was also held by Bell
with regards to traditional contextuality [14],

“The result of an observation may reasonably
depend not only on the state of the system
(including hidden variables) but also on the
complete disposition of the apparatus.”

But despite what we have seen, it is possible that con-
textuality may not be quite so simple to interpret. On
analyzing the contextual interactions between S and M
in more detail one might find stronger restrictions on
their dynamics, restrictions that may seem less natural
than a simple dependence of a measurement outcome on
the interaction between S and M. The point we wish to
emphasis however, is that as far as we are aware, there
do not exist proofs showing the necessity of such stronger
constraints'®, and existing proofs hint only towards the
natural kind of dependence outlined above.

In the next section we use contextuality to deduce a
property that must be possessed by ontological models:
deficiency. Deficiency tells us that the realistic states in
an ontological model are unable to respect certain opera-
tional relations between preparations and measurements
from quantum mechanics. We argue in Sec. [VLAlthat we
would intuitively expect these relations to carry over to
a realistic description of quantum mechanics, and thus
deficiency is at least one aspect of contextuality that
demonstrates restrictions stronger than one might have
expected.

VI. DEFICIENCY

An interesting feature of the KS model is that the
epistemic state associated with preparing a system ac-
cording to state |¢)) has a support equal to the support

15 It should be noted though that there is at least one exception
to this statement. Consider tailoring the measurement arrange-
ment of M to be such that a change of its measurement context
corresponds to altering parts of M that are space-like separated.
Then the requirement of non-contextuality actually becomes a
requirement of nonlocality [24]. However, this special case does
not shed any light on the implications of contextuality in situa-
tions where it possesses an identity separate from nonlocality.



of the indicator function associated with performing a

projective measurement |1)(1| (see Egs. (I0) and (III)).
That is, Supp(u(Al)) = Supp(§(4|A)). This property
is not possessed however, by Bell’s first model. By con-
sidering how its epistemic states and indicator functions
act over the subset A’ of ontic states we can see that
Supp(p(Al)) C Supp(&(y|A)). This lack of an equal-
ity between supports of the epistemic states and indica-
tor functions associated with preparing or measuring the
same quantum state |¢) is what we call deficiency. Bell’s
first model is thus deficient, whilst the KS model fails to
exhibit the property. The KS model also fails to exhibit
TC, which it could not possibly exhibit since it is only
defined for two dimensional Hilbert spaces. Bell’s first
model however, being an outcome deterministic model for
Hilbert spaces having dimension greater than 2, is bound
by the Kochen Specker theorem to exhibit TC. One might
therefore speculate at the possibility of some kind of re-
lationship between TC and deficiency. In fact we will
shortly show that any model exhibiting contextuality for
projective measurements (of which TC is the only known
quantified example!®) must exhibit deficiency.

First however, we must take a moment to define de-
ficiency more rigorously. In the brief introduction pre-
sented above, we referred to there being a single epis-
temic state p(A]1)) associated with a preparation |¢), and
a single indicator function £(¢)|\) associated with a pro-
jective measurement |1)(1)|. The discussion in Sec. [VA]
showed that in some cases one cannot get away with
only associating a single indicator function with |¢)(¢)].
Rather, TC implies that to unambiguously specify an
indicator function one will also need to specify the con-
text of a measurement. It is also a possibility (although
it has not yet been proven to be a necessity) that more
than one epistemic state could be associated with a given
pure state preparation [¢), depending on the setting Sp
used to prepare it. Thus referring to deficiency as mean-
ing Supp(u(A|e)) C Supp(§(¥|N)) is somewhat ambigu-
ous. With respect to which contexts do we need this
expression to hold? Accordingly, we adopt a refined
idea of deficiency. An ontological model will be said to
not be deficient if Supp(u(A|w, Sp)) = Supp(E(¥|A, Sam))
for all Sp, S, where Sp, and Sy denote full spec-
ifications of the device’s settings, including their con-
text. Note that such an equality between supports is the
only possibility in a non-deficient model, since we show
in Lemma [ of Appendix [B] that the epistemic states
and indicator functions of any model must always satisfy
Supp(p(Ale, Sp)) € Supp(£(¥|A, Sa)). Thus we rigor-
ously classify ontological models as deficient by the fol-
lowing criteria,

Definition 13 An ontological model is said to be defi-

16 Note however, that one can envision other (un-quantified) pro-
jective measurement contexts, such as the possibility of altering
a measurement’s von Neumann chain.
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cient if there exists a pure quantum state 1) for which
we have,

Supp(u(Al, Sp)) C Supp(§(Y|A, Sa)),  (53)
for some particular Sp and Sp.

In terms of the quantum formalism, deficiency states that
the set of ontic states possibly describing a system pre-
pared in a quantum state |1)) cannot be the same as those
ontic states triggering a positive outcome for a measure-
ment [1)) (],

It is quite simple to show that TC implies deficiency, so
that any proof of the necessity of TC in ontological mod-
els implies the necessity of deficiency as a simple corol-
lary.

Theorem 1 Any ontological model capable of describing
systems of dimension greater than 2 must be deficient in

the sense of Definition [13.

Proof.

The proof of this theorem proceeds in two parts. We
first present a simple argument showing that any out-
come indeterministic ontological model must be deficient.
Following this we complete the proof by showing that
deficiency must also apply to all outcome deterministic
models, so long as TC holds.

First then, consider outcome indeterministic models,
and suppose for a reductio ad absurdum, that deficiency
does not hold. Then there would exist some quantum
state preparation |1) and associated projective measure-
ment [¢) (1| for which the model employs epistemic states
and indicator functions satisfying,

Supp(u(AlY, Sp)) = Supp(§(Y|A, Sm)),  (54)

for all Sp and Sag.

Now since we expect that a system prepared in a state
|1} should always pass a projective measurement test
[1) (1| then we require,

/ aX p(DEWIN) = 1. (55)

However, since u(A|y)) is a normalized probability dis-
tribution over A (see Eq. ({)) then we can only satisfy

(EE) by having £(y|A\) = 1 for all A € Supp(u(Aly)). But
if deficiency does not hold then this would also imply that

E(PIN) =1 for all A € Supp(€(¥|N)) - i.e. that £(|N) is
a deterministic indicator function, contrary to our initial
assumption. Thus we conclude that if a model is outcome
indeterministic then it must be deficient.

Now we turn to outcome deterministic ontological
models. For another reductio ad absurdum, we again
consider an ontological model that is not deficient, so
that again (B4 holds. Now fix a preparation setting Sp.
Eq. (54) then implies that we will have,

Supp(u(Alyh, Sp)) = Supp(§(¥[A, Sam)) ¥V Sm,  (56)



and thus,

Supp(£(1|A, Sa)) = Supp(E(|A, Shy)),  (57)

for any two measurement settings Saq # S’,. But re-
calling Definition B Eq. (57) has shown that,

—Deficiency = —-TC, (58)

and so,
TC = Deficiency. (59)

But we know from the Kochen Specker argument (re-
produced in Appendix[A]) that there exists some |1)) and
some settings Sxq, S, for which TC can be proven to
occur in any outcome deterministic ontological model of
quantum mechanical systems having dimension greater
than 2. Thus we deduce from (B9) that any such out-
come deterministic ontological model must be deficient.

]

We have trivially been able to show that any outcome
indeterministic model must be deficient. But the pos-
sibility remains that outcome deterministic models of 2
dimensional quantum systems may not be deficient. This
is because Theorem [Tl shows that deficiency results when
deterministic indicator functions are dependent on the
measurement setting Saq. This occurs when a model
exhibits TC, which it cannot if it describes a two dimen-
sional system. But deficiency can also follow if determin-
istic indicator functions are dependent on the prepara-
tion setting of a system, Sp. As we noted in Sections
[T 3] and [T 5 both Aaronson’s model and Bell’s second
model - through their choice of ontic state space - ex-
hibit a dependence of M on Sp, and indeed we can see
that both these models are deficient. For example, in the
case of Bell’s second model, Supp(u(A1)) = H(1) x {1}

(where $(1)) is the hemisphere of A’ centered on 1), so
that epistemic states are restricted to have their sup-
ports over only one element 1/; € A, determined by their
preparation setting Sp. The indicator functions how-
ever, due to their dependence on the system’s quantum
state (i.e. Sp), have the larger support Supp(£(+d|))) =
Usrenr H(@ (X)) x {N"}, where we have written @ (\")
to make clear the implicit dependence of @ on X\ (see
Sec. MIIH). This support includes Supp(u(Al1)) as the

special case N = 7,/;, since then a’'(¢) = 1/7 Thus defi-
ciency is achieved because of £(@|\)’s dependence on A",
i.e. on Sp.

One might also be led to think of deficiency as an im-
plication of TC (since for outcome deterministic models
it is the existence of TC that ensures deficiency). But we
have also trivially managed to show that deficiency must
exist in outcome indeterministic ontological models, for
which TC cannot possibly be exhibited. Thus deficiency
actually holds for a wider class of ontological models than
TC.
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A. Interpreting deficiency

We have seen that for a large class of ontological mod-
els the set of ontic states possibly describing a system pre-
pared in a quantum state [¢)) cannot be the same as those
ontic states triggering a positive outcome for a measure-
ment |¢)(1p|. But what implications does this deficiency
have? How would a deficient ontological model behave?
We now attempt, through an analogy, to describe the op-
erational implications of deficiency, and show that it is
in some sense a surprising property of ontological mod-
els. Of course arguments like this that intend to address
‘intuitiveness’ or ‘surprisingness’ are highly subjective,
but regardless of how it is read, the analogy we provide
below nevertheless gives some picture of the behavior of
deficient ontological models.

Crucial to our definition of deficiency is that we im-
plicitly hold there to be an association between a quan-
tum preparation |¢)) and a quantum measurement |1) (9],
warranting a comparison of the associated epistemic
states and indicator functions. This is of course mo-
tivated by the fact that |¢)(¢| is the unique rank one
measurement for which the Born rule yields an outcome
probability of 1 for a system prepared according to |v).
Understanding the role of this association in an ontologi-
cal model is key to understanding deficiency. To this end,
we digress into a simple analogy from classical physics.

Imagine a toy system consisting of a small ball b, and
suppose that a complete description of the ball is given
by a specification of its position. The ball is a completely
classical object, and so it will always have some definite
position regardless of whether or not it is observed. Sup-
pose that the possible preparation and measurement pro-
cedures that one can perform on b are defined by boxes
fixed at definite positions in space. Preparing b ‘accord-
ing to a box Bp’ implies that b is known to reside at
some definite but unknown position within Bp imme-
diately after the time of preparation. The boxes thus
represent a restriction on our ability to know the exact
position at which b is placed during a preparation. Simi-
larly suppose that the measurements that we can perform
on b are restricted to being performed ‘according to some
box Bj,’. By this we mean that the outcome of such a
measurement would tell us only whether or not the ball
resided within that box, but not its exact position. This
‘box-world’ is in many ways analogous to our ontological
model constructions. The position of b - being a com-
plete description of the ball system - is analogous to our
system ontic states A € A and the boxes Bp and B,
are representative of the supports of epistemic states and
indicator functions over A.

Now scientists living in box-world, perhaps through
some perverse historical accident, have come to adopt a
theory that they refer to as the ‘box-o-centric’ theory. In
this theory it is asserted that there is no ball b, and no
concept of real positions at all - only the abstract concept



of a box!”. Such a theory, wherein we talk only about

boxes, is very strange, since, although the concept of a
box exists, there is no notion of ‘being contained’ within
a box, and furthermore (since box-o-centrics do not find
position to their taste) no way in which to distinguish
between boxes in terms of the positions at which they
reside.

We mentioned above how we associate a quantum
preparation |1) and projective measurement [i)){1)| be-
cause of the probabilities obtained through the Born rule.
Suppose that a box-o-centric scientist wanted to similarly
try and associate box preparations and measurements.
Now a box-o-centric advocate is unable to compare the
positions of two boxes as a reference for such associa-
tions, since she does not believe in such concepts. Thus
the only way a box-o-centric could identify a measure-
ment as being a measurement of box B would be in a
way analogous to how we identify |¢)(1)| as a measure-
ment of |¢) in quantum mechanics. That is, test whether
that measurement always gives a positive outcome when
performed on systems prepared according to box B. A
box satisfying this criterion would, as far as the scientist
is concerned, be the best candidate box for performing
a measurement of box B. Thus box-o-centrics are re-
stricted to only compare boxes in an operational fashion.

But box-o-centrics are not the only scientists in box-
world, there are also box-realists, who heretically believe
that positions exist. They propose that b always re-
sides somewhere, regardless of the fact that box-world
scientists are somehow condemned to only ever possess
incomplete information about its position. Now these
box-realists, who have no qualms with positions, would
naturally hope that preparation and measurement boxes
which had previously been identified with each other by
box-o-centrics would actually be equal - i.e. enclose the
same positions. Then whenever a measurement of box B
had been performed, it really would have been telling us
that b had been prepared with a position inside the box
B.

We can level a similar hope at quantum mechanics;
that upon introducing the idea of ontic states, a measure-
ment [1)(1p| will remain associated with a preparation
|¢)). By this we mean that we would like the ontological
description to be such that any system yielding a positive
outcome for [1))(1)| will have been described by an ontic
state that a preparation |¢) could have left it in. i.e. we
would hope that Supp(u(A|p)) = Supp(€(¥|N)). Since
[1)) (1| is the best measurement that quantum mechanics
provides for testing whether a system is in a state |¢),
our proof of deficiency shows that there is no quantum
measurement that would allow us to deduce with certainty
whether the ontological configuration of a system was
compatible with a preparation ). So deficiency tells us

17 Scientists from box-world who support the box-o-centric theory
are likely to feel at home with operational quantum mechanics.
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that the real description introduced by an ontological
model cannot, as we might have hoped, maintain the op-
erational association we make between preparations and
measurements in quantum mechanics. Any such realistic
theory must instead exhibit a more complicated struc-
ture.

One can also use deficiency to restrict the dynamics an
ontological model implements upon measurement. For
every state, there are occasions when a measurement of
the projector onto that state will necessarily induce a
disturbance of a system’s ontic state. To help show this,
denote,

D(1p) = Supp(§(¥|A)) — Supp(u(Al)). (60)

Deficiency shows that there exist states 1 such that
D) # 0. Tt will also be helpful to note that for any
A € D(¢) one can always find a state |¢) such that A
falls in the support of its epistemic state. Furthermore,
since its epistemic state has a finite overlap with D(¢)),
this state |¢) will neither be equal, nor orthogonal to |v).
Now the update rule that quantum mechanics specifies
when obtaining an outcome IL, = |1) (1| of some PVM
performed on a system in state pg = |¢)(¢]| is,

_ Hypelly
tr(Iypp)

One might expect that the analogous update rule in a
deterministic ontological model would be,

Y
O =T oieom @

Which essentially ‘projects’ the system’s epistemic state
onto the support of £(¢|\). However, this non-disturbing
update rule must fail in deficient ontological models be-
cause deficiency requires A to be disturbed upon mea-
surement, as we now show.

Suppose that we implement the preparation of a sys-
tem in some quantum state by filtering the results of a
measurement on the system. For example, assuming a
von Neumann collapse rule, a preparation of a system S
in state |¢) can be effected by performing a PVM mea-
surement, P, containing the rank one projector |¢) (1|, on
S and then post-selecting only those systems that yield
the outcome corresponding to [¢)(1|. The systems that
will survive this measure-and-filter procedure and be pre-
pared in state i) are thus those yielding the outcome
[t) (1| of P. Therefore any system described by an on-
tic state satisfying A € Supp(&(¢|A)) will successfully be
prepared in state |1) by this method.

Now naturally, we require that the ontic state of any
system said to be prepared in a state |i)) should satisfy
A € Supp(p(Ale)). But as we noted previously, a system
can be configured according to an ontic state A € D(¢)),
such that the measure-and-filter procedure will prepare
it in state [¢), but yet it does not satisfy the associ-
ated requirement A € Supp(u(A|y)). Measurements in

Py (61)




a deficient model must employ some kind of ontic state
dynamics to rectify this inconsistency, and consequently
Eq. (62)) cannot correctly describe the measurement pro-
cess in ontological models. Whilst one can give much
simpler proofs to show that realistic theories must pro-
vide such a disturbance on measurement, our derivation
shows explicitly how disturbance can be related to the
contextual nature of a theory.

VII. CONCLUSIONS

We have outlined how one can increase the scope of an
existing formalism for realistic theories to include mod-
els that consider measurement procedures in more detail.
An often debated topic is whether or not contextuality
is a truly surprising requirement of ontological models.
In Sec. [VBl we have shown how our quantitative de-
scription of measurement devices allows contextuality (to
the extent that it is normally considered) to be realized
as a reasonable dynamical constraint on the interaction
of a system and measurement device. However, as we
stressed previously, this leaves open the possibility that
these constraints might, under further investigation, take
on a more pathological form. Indeed, in Sec. [V we went
some way in this direction by arguing that deficiency - the
fact that one cannot faithfully associate measurements
with a given preparation - provides at least one aspect
of contextuality which is manifestly not so reasonable. If
nothing else, we see this as evidence that there is more
to be said about contextuality, and that judgement of its
implications should be reserved until one can quantita-
tively analyze its effects in more depth.

Addressing problems from quantum information us-
ing a realistic approach to quantum mechanics can be
a powerful tool, a fact highlighted by Aaronson’s work
on complexity and hidden variables. Using the ontologi-
cal model formalism, we have characterized those models
to which his results apply. Another key motivation for
our study of ontological models is to quantify the concep-
tual problems of quantum mechanics relative to a realis-
tic framework. Crucially, we see the utility of a realistic
approach as being able to highlight these problems in
a familiar language, regardless of whether the approach
satisfactorily solves them. Essentially, our motivation is
to see what properties a realistic theory must possess in
order to reproduce quantum mechanics. In this paper
we have tried to build on this approach by going some
way to quantitatively clarifying the status of contextu-
ality and introducing the property of deficiency. Much
work remains to be done in order to fully understand the
requirements of any realist theory reproducing quantum
mechanics, but there has been evidence [g] to show that
this approach may indeed be a fruitful one.
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FIG. 4: The graph used by Kochen and Specker in [12] to pro-
vide a geometric impossibility argument proving the necessity
of traditional contextuality.
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APPENDIX A: PROVING KS THEOREM FOR
ONTOLOGICAL MODELS

The argument that Kochen and Specker (KS) used [12]
to prove that any realistic theory must exhibit traditional
contextuality (TC) involves a remarkable geometric con-
struction which we now outline. KS did not derive their
proof using the formalism we introduced in Sec. [Il but
instead worked in a simpler (yet more restrictive) for-
malism wherein they simply consider assigning a definite
outcome value v(P) € {0,1} to any projective measure-
ment P. We now review their proof within our ontologi-
cal model approach, allowing us to directly see traditional
contextuality’s repercussions for these theories.

The argument begins by considering a specific set,
U = {|z/11>}11i§, of 116 states pertaining to a quan-
tum system S described by a three dimensional Hilbert
space. KS represent these states graphically by assigning
a graph vertex to each of the 116 states, and connect-
ing vertices by an edge if they correspond to orthogonal
states. The spectacular resulting graph, shown in Fig. [,
can be considered an ‘orthogonality map’ of the set .

The elements of ¥ are taken to define a set of 116
projective measurements that one could performed on a
3 dimensional quantum system, P = {|w1><wz|}zli61 An
element |1;)(1);| € P represents a test for whether a sys-
tem is in the state [¢;). An outcome deterministic onto-
logical model introduces a set of 116 indicator functions



=E={¢ (z|)\)}11i§, which are distributions over the ontic
state space of S. These are taken to be in one-to-one
correspondence with the set P of projectors. We restrict
our attention, as KS did in their original argument, to
outcome deterministic ontological models'®. Therefore,
when evaluated at some fixed, but otherwise arbitrary
ontic state A’ € A, each element of = will specify an as-
signment of either 0 or 1 to its corresponding projector
from P. Equivalently, we can think of each element of =
as specifying, for each X' € A, an assignment of 0 or 1 to
each vertex in Fig.[dl The task at hand for an ontological
model is to perform these binary assignments to graph
vertices in a way consistent with the predictions of quan-
tum theory. KS re-word this task as a graph coloring
problem by representing the assignment of 0 or 1 to each
element of P as a coloring of the corresponding vertex
in Fig. M as either red (for an assignment of value 0) or
green (for an assignment of value 1). The task faced by
an ontological model is then to color the vertices of Fig. @l
in a way consistent with quantum mechanics. But just
what are the restrictions that quantum theory imposes
on such a coloring? Having defined their coloring scheme,
KS derive a set of three coloring constraints, which are
imposed on any coloring of Fig. @ by the predictions of
quantum mechanics,

1. FEvery vertex must be colored either red or green.

2. Any three vertices forming a triangle (a triad of
vertices) must be colored such that one and only
one is green.

3. Any two connected vertices must be colored so that
both of them are not green.

(A1)

The first of these constraints is the defining require-
ment of realism, whilst the second and third can be de-
duced from Lemmas Bl and @ in Appendix Bl To see
how, note that since we consider a 3 dimensional quan-
tum system, vertices forming a triad are associated with
three mutually orthogonal states. Thus each triad defines
a PVM measurement on §. Lemmas [3] and @] together
imply that one and only one of the triad of (assumed in-
deterministic) indicator functions associated with a PVM
can assign a value of 1 for any given A € A. Thus one
and only one vertex from a triad can be colored green.
Having given a coloring scheme and a set of constraints
on how the scheme must be applied, KS then employ a
geometrical argument to show that coloring Fig. M ac-
cording to conditions (AT]) is impossible (see |12, 24, [29]
for outlines of this geometrical argument).

There is however, an implicit and subtle assumption
required for this proof to go through. Specifically, there

18 The generalized notion of contextuality that we introduce in
Sec. [ Al can be applied to outcome indeterministic models.
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is a subset of vertices in Fig. [ which belong to more
than one triad, and the geometrical part of the KS argu-
ment implicitly needs to assume that one does not alter
the color assigned to such a vertex dependent on which
triad it is considered to reside in. Since every triad de-
fines a PVM then such a dependence would constitute
a reliance of the outcome assigned to a projector on the
particular PVM that a measurement device M employs
to measure it. This is precisely TC. Hence for the KS
impossibility argument to go through one must assume
a realistic theory which assigns values in a traditionally
non-contextual manner. Thus Fig. 4 can be colored con-
sistently only by traditionally contextual theories. Con-
sistently coloring Fig. @ is a mandatory requirement of
any realistic interpretation of quantum mechanics (since
such a view should assign all attributes pre-existing val-
ues) and so we are forced to conclude that any realistic
theory must exhibit TC.

It is worth mentioning that in the traditional formu-
lation of the KS argument there are several subtleties
involved in assuming that quantum mechanical statistics
can be taken to imply constraints on an realistic the-
ories predictions for individual measurement outcomes
(see |29] for more details). These philosophical subtleties
still remain in our adaption of the argument. In partic-
ular, they implicitly arise in our derivation of Lemmas
and M which are crucial in deriving the coloring con-

straints (AT).

APPENDIX B: ELEMENTARY RESULTS

There are several simple relations between the epis-
temic states and indicator functions of any ontological
model which can be seen to follow almost immediately
from the definitions of these distributions. In this ap-
pendix we outline those relations which are of use to us
in the main text.

Firstly we note a simple relation between the supports
of epistemic states and indicator functions;

Lemma 1 The epistemic state p(Av) associated with
a preparation of state |¢) must have a support con-
tained entirely within the support of the indicator func-
tion &(Y|A\) associated with a projective measurement

[¥) (I,

Supp(u(Al)) S Supp(§([A)). (B1)

Proof. Quantum mechanical statistics tell us that a
system prepared according to [¢) should always pass a
test [1) (v, since |(¥[1))|*> = 1. An ontological model
attempts to reproduce this result through the integral,

/ dX (A )E(WIN) / dX p(N|)E(|N)
A S

upp(&(¥|A))

= 1. (B2)



Where we have made use of the fact that the integral
over A will only be non-zero within Supp(£(¥|A)). Not-
ing that 0 < £(y|A) < 1 and recalling the normalization
constraint (1) on u(A|)) we see that this integral can
only take the required value of 1 if it includes the whole
of Supp(p(A|¥)). Thus we require (Bl to hold. m

Whether or not we can see the inclusion in (Bl to
be strict is the subject of our discussion of deficiency in
Sec. V1

Lemma [T allows us to immediately deduce a useful fact
regarding the epistemic states associated with orthogonal
quantum states 3],

Lemma 2 Epistemic states u(\|Y) and p(AJypr) associ-
ated with two orthogonal quantum states |¢) and |1h)
must have disjoint supports;

Supp((A[)) N Supp(p(Ny+)) =0.  (B3)
Proof. This result follows simply from noting
that quantum mechanics predicts that a state |¢)
should never pass a test for being in an orthogonal
state ) (|([v1)? = 0). In order for an on-
tological model to respect this we clearly need to
have that Supp(u(AlY)) N Supp(§(¥+[A)) = 0 (and
Supp(p(Alp1)) N Supp(£(¥|A)) = 0), since otherwise it
is possible that a preparation of |¢)) could result in S
being prepared in an ontic state that could then trigger a
positive outcome in a measurement of [¢) (¢)|. Referring
to Lemma [Il we see that this disjointness of the supports

of u(AlY) and (v |\) will also imply (B3)). m

We can furthermore deduce two simple relations for the
supports of indicator functions associated with a PVM
measurement.

Lemma 3 The set of indicator functions {{(k|\)}, as-
sociated with elements {|k)(k|}, of a PVM measurement
must have supports completely spanning the system’s on-
tic state space A,

| Supp(&(kIN) = A (B4)
k

Proof. This Lemma follows directly from (2)), which
encodes the quantum mechanical requirement that
a PVM should always exhibit some outcome. (B4)
ensures that an ontological model will predict some
PVM outcome, no matter what ontic state describes a
system. m

We can in fact see that the supports of indicator func-
tions associated with elements of a PVM not only span
A (as in (B4)), but - if the indicator functions are idem-
potent - furthermore partition it,

24

Lemma 4 A set of deterministic indicator functions
{&(K|N)},, associated with elements {|k)(k|}, of a PVM

measurement must have mutually disjoint supports,

Supp(§(k|N)) N Supp(§(1[N)) =

Where k and 1 label any two elements of the PVM mea-
surement.

(B5)

Proof. This result follows from the quantum mechanical
prediction that we should only ever obtain one outcome
in any complete PVM measurement. The disjointness of
the indicator functions associated with different PVM
outcomes is necessary to ensure that there is no A € A
that would yield more than one outcome for the PVM. m

There are also several quantum mechanical relations
between density operators and POVM elements that
must carry over to relations between epistemic states and
indicator functions, as was noted in [3]. Firstly, consider
different convex decompositions of a density operator.

Lemma 5 If a density operator can be prepared accord-
ing to a convex decomposition p = Y . pi|ti)(Yi| (corre-
sponding to configuring a measurement device according
to some setting Sp) then the epistemic state associated
with p when prepared in this way must satisfy a similar

relation,
1(Alp, Sp) sz (Als). (B6)

Proof. This follows from a purely operational argu-
ment. We wish u(A|p, Sp) to give the probability of the
ontic state of S being A given that P was configured
with a setting Sp. Now Sp corresponds to a convex
decomposition wherein, with probability p;, the chance
of obtaining A is given by the probability with which
we would expect to find A if the system was described
by quantum state ;. But the ontological model’s
prediction for the latter probability is just p(A|y;) and
so the overall probability of obtaining A is given by
> pit(A);), as stated above. m

Similarly, we can show that any convex structure of
POVM measurements must carry over to the ontological
model description of measurements,

Lemma 6 If a POVM can be prepared by probabilisti-
cally performing one of a set of PVM measurements, so
that a particular effect E from the POVM can be im-
plemented as E =", p;|Y;)(1;| (corresponding to a set-
ting Sy of a measurement device M) then the indicator
function associated with E when implemented in this way

must satisfy,



Proof. The proof of this Lemma follows from an oper-
ational argument similar to the proof given for Lemma
Performing the measurement E = ). p;[;) (5] im-
plies an operational procedure wherein we choose a la-
bel i according to the probability distribution {p;}, and
then implement the associated rank one measurement
P, = |)(¢;| by performing the PVM {P;,1 — P;}.
Now one can ask how we might write the probability
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E(E|A, Spam) for obtaining the outcome associated with E
given that the ontic state of the system was A. Had we
performed a rank one projective measurement P; then
the probability of getting a positive outcome would be
&(¥i|N). Since E corresponds to implementing P; with
probability p; then it follows from elementary probabil-
ity theory that {(E|X, Sam) = D, pi&(vi|A\), which is the
desired result. m
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